# **CONTROL SYNTHESIZER**



# SERVICE MANUAL



# **CONTENTS**

| SPECIFICATIONS         |        |
|------------------------|--------|
| PANEL LAYOUT           | 4      |
| CIRCUIT BOARD LAYOUT   | 5      |
| BLOCK DIAGRAM          | 6      |
| WIRING                 | 7      |
| DISASSEMBLY PROCEDURI  |        |
| LSI PIN DESCRIPTION    | 13     |
| IC BLOCK DIAGRAM       | 18     |
| CIRCUIT BOARDS         | 20     |
| TEST PROGRAM           | 24/34  |
| MIDI DATA FORMAT       | 44     |
| MIDI INPLEMENTATION CH | ART 48 |
| PARTS LIST             |        |
| OVERALL CIRCUIT DIAGRA | M      |

#### IMPOR TANT NOTICE

This manual has been provided for the use of authorized Yamaha Retailers and their service personnel. It has been assumed that basic service procedures inherent to the industry, and more specifically Yamaha Products, are already known and understood by the users, and have therefore not been restated.

WARNING: Failure to follow appropriate service and safety procedures when servicing this product may result in personal injury, destruction of expensive components and failure of the product to perform as specified. For

these reasons, we advise all Yamaha product owners that all service required should be performed by an

authorized Yamaha Retailer or the appointed service representative.

IMPORTANT: This presentation or sale of this manual to any individual or firm does not constitute authorization certifi-

cation, recognition of any applicable technical capabilities, or establish a principal-agent relationship of

The data provided is belived to be accurate and applicable to the unit(s) indicated on the cover. The research engineering, and service departments of Yamaha are continually striving to improve Yamaha products. Modifications are, therefore, inevitable and changes in specification are subject to change without notice or obligation to retrofit. Should any discrepancy appear to exist, please contact the distributor's Service Division.

WARNING: Static discharges can destroy expensive components. Discharge any static electricity your body may have

accumulated by grounding yourself to the ground bus in the unit (heavy gauge black wires connect to

IMPORTANT: Turn the unit OFF during disassembly and parts replacement. Recheck all work before you apply power

to the unit

#### LITHIUM BA TTER Y HANDLING

This product uses a lithium battery for memory back-up.

Lithium batteries are dangerous because they can be exploded by improper handling. Observe the following precautions when handling or replacing lithium batteries.

- Leave lithium battery replacement to qualified service personnel.
- Always replace with batteries of the same type.
- When installing on the PC board by soldering, solder using the connection terminals provided on the battery cells.
- Never solder directly to the cells. Perform the soldering as quickly as possible.
- Never reverse the battery polarities when installing.
- Do not short the batteries.
- Do not attempt to recharge these batteries.
- Do not disasemble the batteries.
- Never heat batteries or throw them into fire.

### ADVARSEL!

Lithiumbatteri-Eksplosionsfare ved fejlagtig handtering. Udskiftning ma kun ske med batteri af samme fabrikat og type. Iever det brugte batteri tilbage til leverandren.

### VARNING

Explosionsfara vid felaktigt batteribyte.

Anvand samma batterityp eller en ekvivalent typ som rekommenderas av apparattillverkaren. Kassera anvant batteri enligt fabrikantens instruktion.

#### VAROITUS

Paristo voi rajahtaa, jos se on virheellisesti asennettu.

Vaihda paristo ainoastaan laitevalmistajan suosittelemaan tyyppiiin. Havita kaytetty paristo valmistajan ohjeiden mukaisesti.

The following information complies with Dutch official Gazette 1995. 45; ESSENTIALS OF ORDER ON THE COLLECTION OF BATTERIES.

- Please refer to the diassembly procedure for the removal of Back-up Battery.
- Leest u voor het verwijderen van de backup batterij deze beschrijving.

### WARNING: CHEMICAL CONTENT NOTICE!

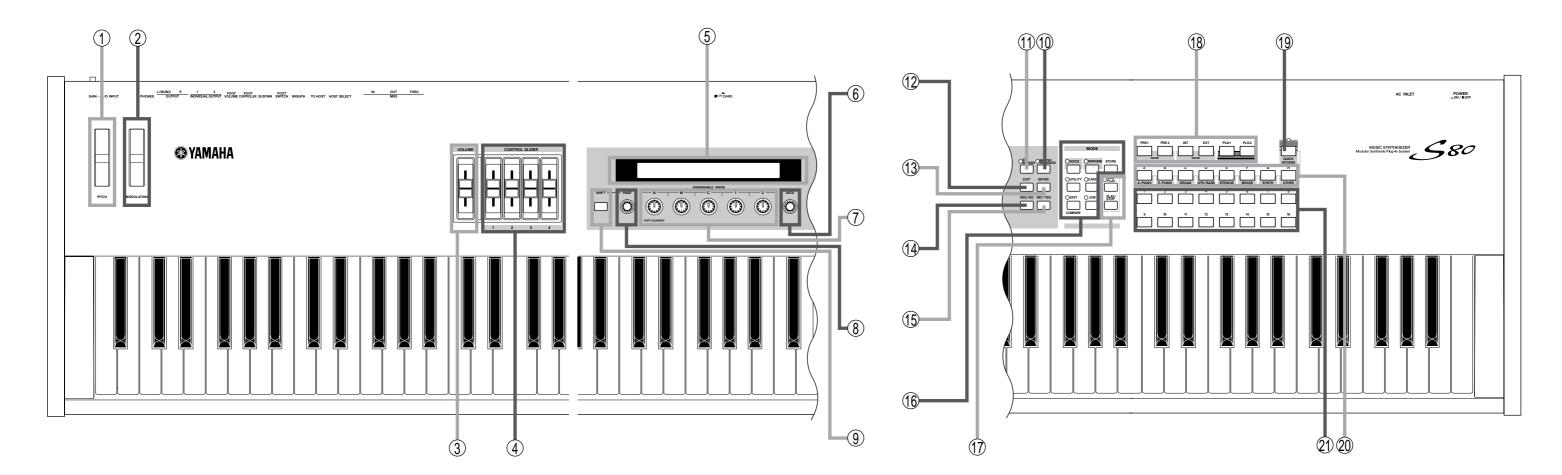
The solder used in the production of this product contains LEAD. In addition, other electrical/electronic and/or plastic (Where applicable) components may also contain traces of chemicals found by the California Health and Welfare Agency (and possibly other entities) to cause cancer and/or birth defects or other reproductive harm.

DO NOT PLACE SOLDER, ELECTRICAL/ELECTRONIC OR PLASTIC COMPONENTS IN YOUR MOUTH FOR ANY REASON WHAT SO EVER!

Avoid prolonged, unprotected contact between solder and your skin! When soldering, do not inhale solder fumes or expose eves to solder/flux vapor!

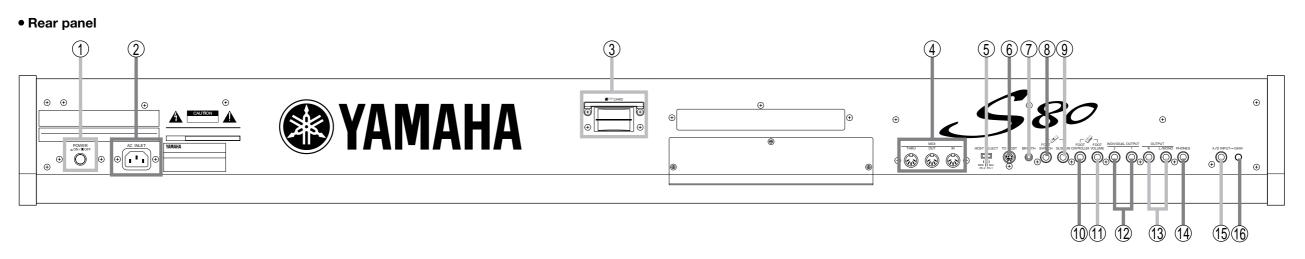
If you come in contact with solder or components located inside the enclosure of this product, wash your hands before handling

# WARNING


Components having special characteristics are marked 1 and must be replaced with parts having specification equal to those originally installed.

# **■ SPECIFICATIONS**

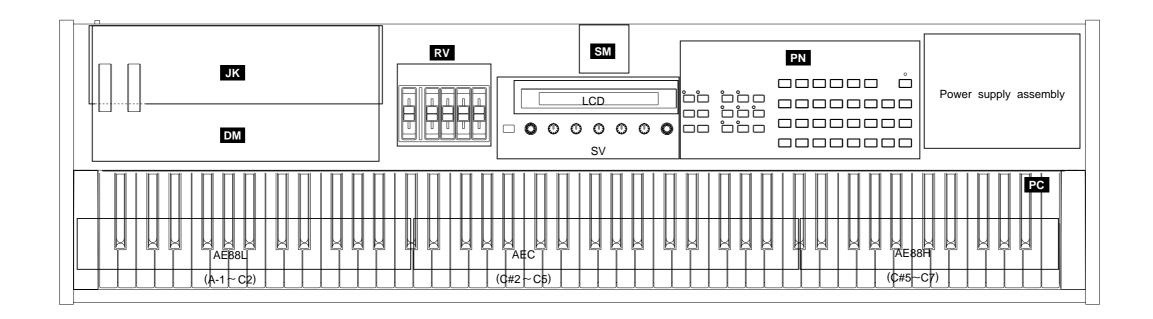
|                        | 1                         |                                                                                                                                 |  |  |  |
|------------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| KEYBOARD               | Number of Keys            | 88                                                                                                                              |  |  |  |
|                        | Touch                     | Initial touch, After touch                                                                                                      |  |  |  |
| TONE GENERATION SYSTEM | Tone Generators           | AWM2, Modular Synthesis Plug-in System                                                                                          |  |  |  |
|                        | Polyphony                 | 64                                                                                                                              |  |  |  |
| VOICE                  | Number of Voice           | Normal voices (256 Presets, 128 Internals [Users], 128 Externals [Memory Cards]),                                               |  |  |  |
|                        |                           | Drum voices (8 presets, 2 Internals [Users], 2 Externals [Memory Cards]), Plug-in voices (64 x 2 Plug-in Boards [If installed]) |  |  |  |
|                        | Wave ROM                  | 24 MByte                                                                                                                        |  |  |  |
| PERFORMANCE            | Multi-Timbres             | 19 (16 Voice Parts, A/D Input Part, Plug-in 1/2 Parts)                                                                          |  |  |  |
|                        | Number of Performance     | 128 Internals, 64 Externals                                                                                                     |  |  |  |
|                        | Master Keyboard Mode      | 4 Zones                                                                                                                         |  |  |  |
| EFFECT                 | Reverb                    | 12                                                                                                                              |  |  |  |
|                        | Chorus                    | 23                                                                                                                              |  |  |  |
|                        | Insertion                 | 24 (Insertion 1), 92 (Insertion 2), 24 (Insertion for Plug-in Voices)                                                           |  |  |  |
|                        | Master EQ                 | 4                                                                                                                               |  |  |  |
| SEQUENCE PLAY          | Format                    | SMF Format 0 (Direct Play only), Sequence Chain (Load/Save)                                                                     |  |  |  |
|                        | Number of Sequence Chains | 100 Steps (100 Songs)                                                                                                           |  |  |  |
| ARPEGGIATOR            | Number of Arpeggios       | 128                                                                                                                             |  |  |  |
| Card                   | File Type                 | All Data, All Voice, Plug-in, Sequence Chain, SMF                                                                               |  |  |  |
|                        | Functions                 | Save, Load, Rename, Delete, Make Directory, Format                                                                              |  |  |  |
| CONTROLS               |                           | Volume Slider, 4 Control Sliders, Pitch, Modulation, Shift, Page, Knob A/B/C/1/2, Data, Effect Bypass, Master Keyboard, Exit,   |  |  |  |
|                        |                           | Enter, Dec/No, Inc/Yes, 7 Mode Keys, Sequence Play, Sequence PLAY/STOP, 6 Memory Keys, Quick Access, 8 Bank Keys,               |  |  |  |
|                        |                           | 16 Program/Part Keys, Power, Card Slot, Gain, Host Select                                                                       |  |  |  |
| CONNECTORS & TER       | MINALS                    | MIDI In, Out, Thru, To Host, Breath, Footswitch, Sustain, Foot Controller, Foot Volume, Individual Output 1, 2,                 |  |  |  |
|                        |                           | Output L/Mono R, Phones, A/D Input, AC Inlet, 2 Connectors for Plug-in Boards                                                   |  |  |  |
| DISPLAY                |                           | 40 x 2 (Backlit)                                                                                                                |  |  |  |
| INCLUDED ACCESSO       | RIES                      | Owner's Manual, Data List, CD-ROM, AC Power Cord                                                                                |  |  |  |
| OPTIONAL ACCESSO       | RIES                      | PLG150 Plug-in Boards Series, PLG100 Plug-in Boards Series, FC4/5 Footswitch, FC7 Foot Controller, BC3 Breath Controller        |  |  |  |
| POWER CONSUMPTION      | ON                        | 16W                                                                                                                             |  |  |  |
| OUTPUT IMPEDANCE       | :                         | Output: +18.1 ±2dbm (10k ohms), Phones: +17.2 ±2dbm (33 ohms)                                                                   |  |  |  |
| DIMENSIONS             |                           | 1329(W) x 371(D) x 157(H) mm                                                                                                    |  |  |  |
| WEIGHT                 |                           | 24.3 kg                                                                                                                         |  |  |  |
|                        |                           |                                                                                                                                 |  |  |  |


# **PANEL LAYOUT**

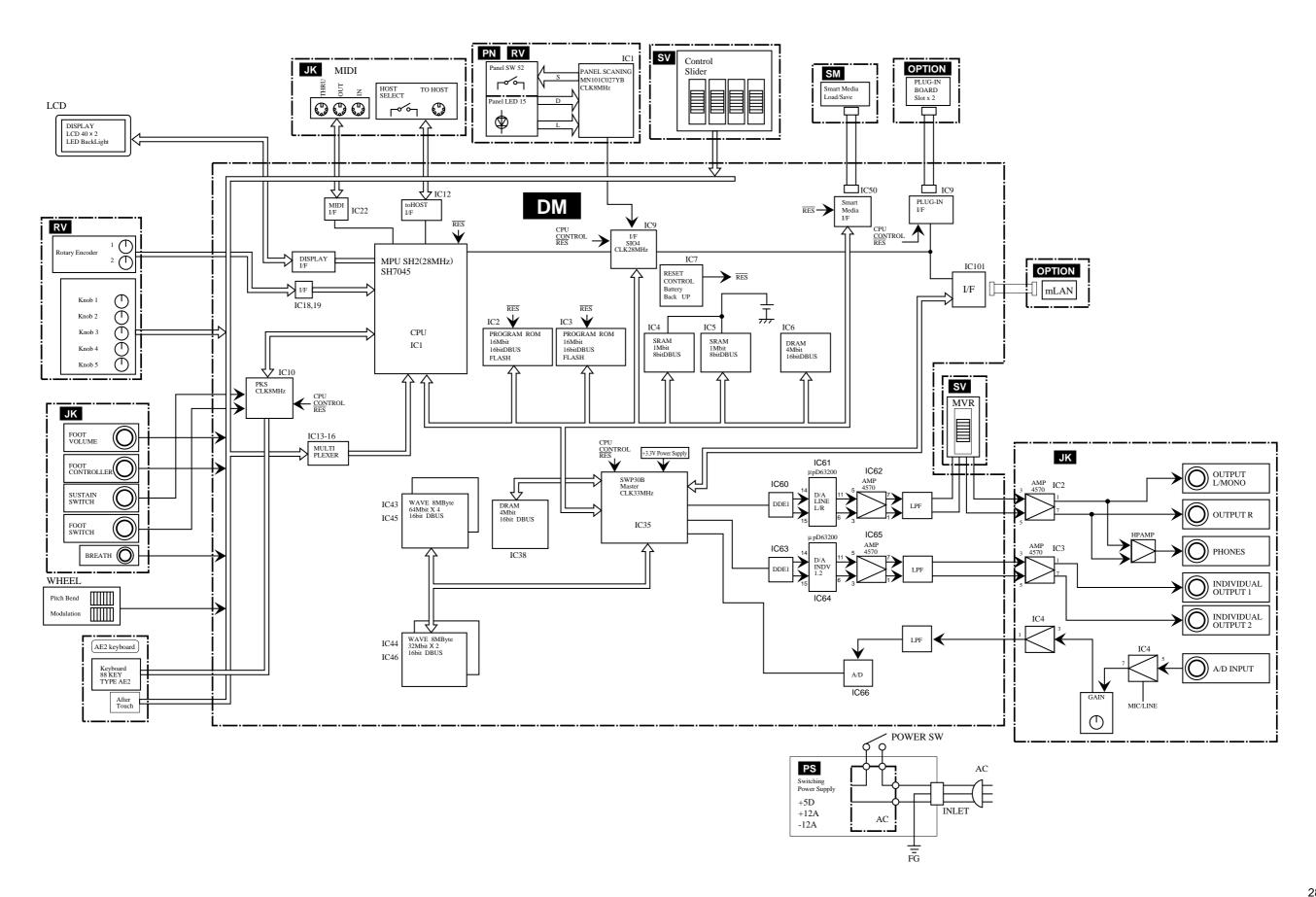
# Front panel



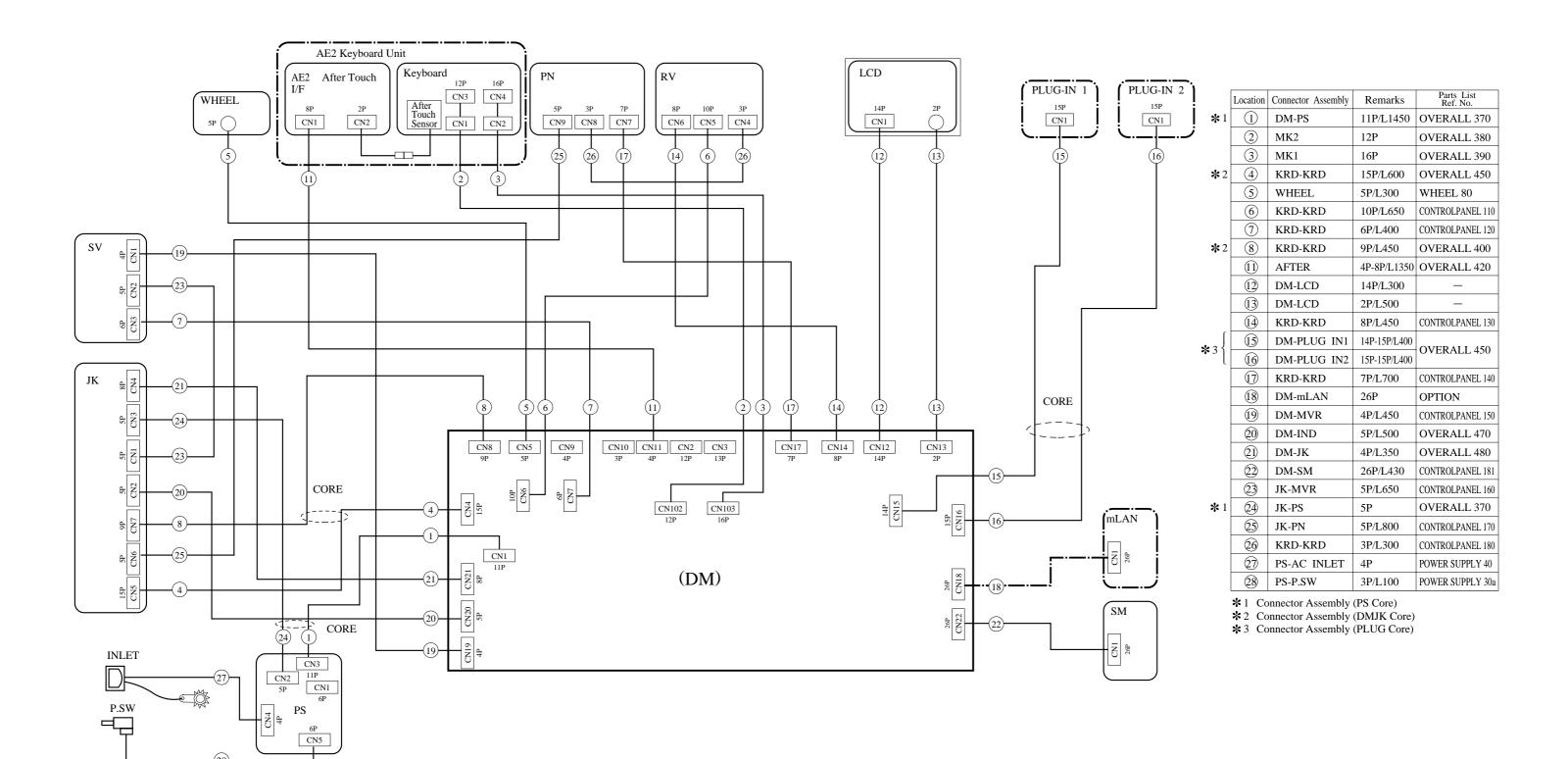
- 1 PITCH bend wheel
- **② MODULATION wheel**
- 3 [VOLUME] Slider
- **4** Control Sliders
- **(5)** LCD (Liquid Crystal Display)
- 6 [DATA] knob
- 7 Knobs [A], [B], [C], [1] and [2]
- 8 [PAGE] knob
- 9 [SHIFT] key
- (1) [MASTER KEYBOARD] key


- (1) [EF BYPASS] key
- 12 [EXIT] key
- (13) [ENTER] key
- (14) [DEC/NO] key
- (15) [INC/YES] key
- 16 MODE keys 17) SEQ controls
- **18 MEMORY keys**
- (19) [QUICK ACCESS] key
- 20 BANK [A] to [H] keys
- 21 PROGRAM/PART [1] to [16] keys




- (1) POWER switch
- 2 AC INLET terminal
- 3 CARD slot
- **4** MIDI IN, OUT, and THRU connectors
- **⑤** HOST SELECT switch
- **(6) TO HOST terminal**
- (7) BREATH jack
- **8** FOOT SWITCH jack

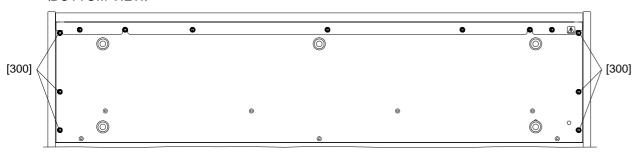
- 9 SUSTAIN jack
- 10 FOOT CONTROLLER jack
- 1 FOOT VOLUME jack
- 12 INDIVIDUAL OUTPUT 1 and 2 jacks
- (3) OUTPUT L/MONO and R jack
- 14 PHONES jack
- (15) A/D INPUT jack 16 GAIN knob


# **CIRCUIT BOARD LAYOUT**



# **BLOCK DIAGRAM**




# **WIRING**



# **DISASSEMBLY PROCEDURE**

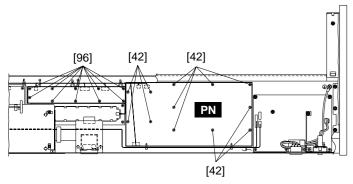
1. Remove the six (6) screws marked [300] from the bottom of the main unit and open the control panel assembly by lifting it up. (Fig. 1)

### **(BOTTOM VIEW)**

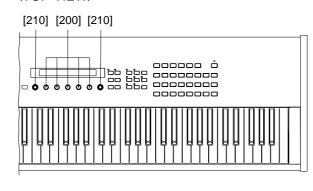


[300]: Bind Head Screw 5.0X20 MFZN2BL (VB857600)

Fig.1


### 2. PN Circuit Board

- 2-1 Open the control panel assembly. (See procedure 1.)
- 2-2 Remove the twelve (12) screws marked [42]. The PN circuit board can then be removed. (Fig. 2)


### 3. RV Circuit Board

- 3-1 Open the control panel assembly. (See procedure 1.)
- 3-2 Remove the five (5) knobs marked [200] and the two (2) knobs marked [210] from the panel surface.
- 3-3 Remove the ten (10) screws marked [96]. The RV circuit board can then be removed. (Fig. 2)

# ⟨BOTTOM VIEW⟩



# ⟨TOP VIEW⟩



[42]: Bind Head Tapping Screw-B 3.0X6 MFZN2BL (EP600230)

[96]: Bind Head Tapping Screw-B 3.0X6 MFZN2BL (EP600230)

Fig.2

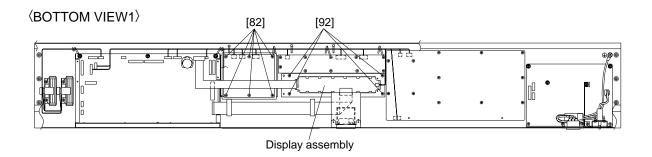
# 4. Power Supply Unit

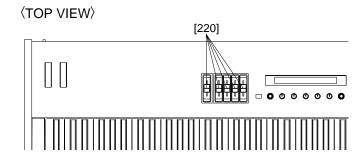
- 4-1 Open the control panel assembly. (See procedure 1.)
- Remove the two (2) screws marked [30] and the five (5) screws marked [31]. (Fig. 3)
- 4-3 Remove the four (4) screws marked [22] from the power assembly. (Fig. 3) Power supply unit can then be removed.

#### 5. SM Circuit Board

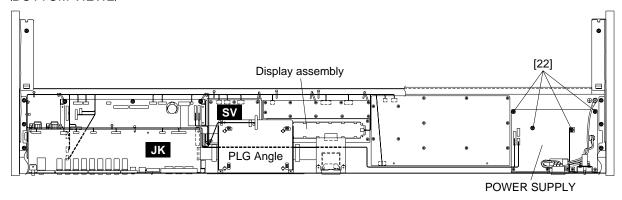
- 5-1 Open the control panel assembly. (See procedure 1.)
- 5-2 Remove the two (2) screws marked [96]. The SM circuit board can then be removed. (Fig. 4)

#### 6. SV Circuit Board

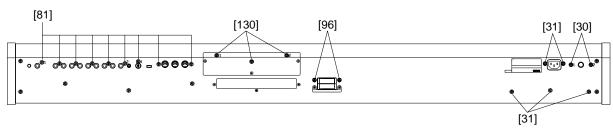

- 6-1 Open the control panel assembly. (See procedure 1.)
- 6-2 Remove the three (3) screws marked [130]. The PLG angle can then be removed. (Fig. 4)
- 6-3 Remove the five (5) knobs marked [220] from the panel surface. (Fig. 4)
- 6-4 Remove the six (6) screws marked [82]. The SV circuit board can then be removed. (Fig. 3)


### 7. Display Assembly

- 7-1 Open the control panel assembly. (See procedure 1.)
- 7-2 Remove the PLG angle. (See procedure 6-2.)
- 7-3 Remove the four (4) screws marked [92]. The display assembly can then be removed. (Fig. 3)


### 8. JK Circuit Board

- 8-1 Open the control panel assembly. (See procedure 1.)
- 8-2 Remove the nine (9) screws marked [81]. The JK circuit board can then be removed. (Fig. 3)



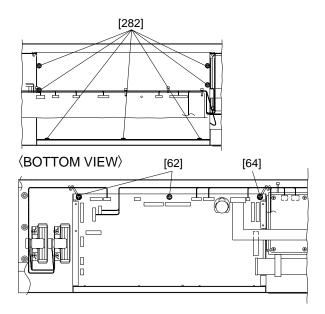


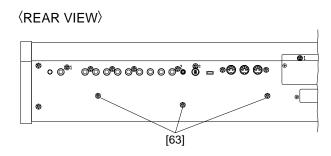

# ⟨BOTTOM VIEW2⟩



# ⟨REAR VIEW⟩




- [22]: Bind Head Tapping Screw-B 3.0X6 MFZN2BL (EP600230)
- [30]: Bind Head Tapping Screw-B 3.0X6 MFZN2BL (EP600230)
- [31]: Bonding Tapping Screw-B 3.0X10 MFZN2BL (VQ049800)
- [81]: Bonding Tapping Screw-B 3.0X10 MFZN2BL (VQ049800)
- [82]: Bind Head Tapping Screw-B 3.0X6 MFZN2BL (EP600230)
- [92]: Bind Head Tapping Screw-B 3.0X6 MFZN2BL (EP600230)
- [96]: Bind Head Tapping Screw-B 3.0X6 MFZN2BL (EP600230)
- [130]: Bind Head Tapping Screw-B 3.0X6 MFZN2BL (EP600230)


Fig.3

### 9. DM Circuit Board

- 9-1 Open the control panel assembly. (See procedure 1.)
- 9-2 Remove the JK circuit board. (See procedure 8.)
- 9-3 Remove the seven (7) screws marked [282]. The DM shield cover can then be removed. (Fig. 4)
- 9-4 Remove the three (3) screws marked [63]. (Fig. 4)
- 9-5 Remove the two (2) screws marked [62] and the screw marked [64] from the DM circuit board.

  Be careful of the harness clamp, which is also installed there. (Fig. 5)





[62]: Bind Head Tapping Screw-B 3.0X6 MFZN2BL (EP600230)[63]: Bonding Tapping Screw-B 3.0X10 MFZN2BL (VQ049800)

[64]: Bind Head Tapping Screw-B 3.0X8 MFZN2BL (EP600190)

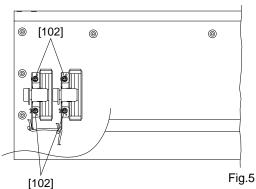

[282]: Bind Head Tapping Screw-B 3.0X6 MFZN2BL (EP600230)

Fig.4

### 10. Wheel Assembly

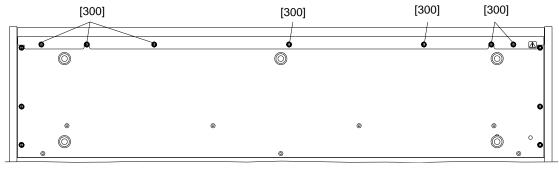
- 10-1 Open the control panel assembly. (See procedure 1.)
- 10-2 Remove the JK circuit board. (See procedure 8.)
- 10-3 Remove the four (4) screws marked [102]. The wheel assembly can then be removed. (Fig. 5)

### **(BOTTOM VIEW)**



[102]: Bind Head Tapping Screw-B 3.0X6 MFZN2BL (EP600230)

### 11. PC Circuit Board

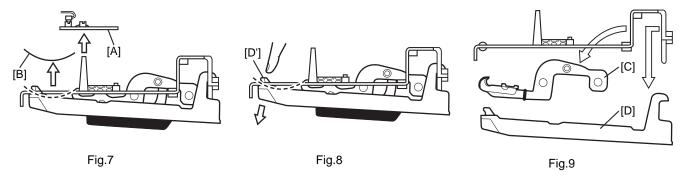

- 11-1 Open the control panel assembly. (See procedure 1.)
- 11-2 Remove the two (2) screws marked [250]. The PC circuit board can then be removed. (Fig. 6)

### 12. Keyboard Assembly

- 12-1 Open the control panel assembly. (See procedure 1.)
- 12-2 Remove the four (4) screws marked [230] and the four (4) screws marked [240]. (Fig. 6)
- 12-3 Loosen the two (2) screws marked [292], which are secring the front rail. (Fig. 6)
- 12-4 Remove the seven (7) screws marked [300], which are secring the front rail at the bottom of the main unit to the keyboard assembly. The keyboard assembly can then be removed. (Fig. 6)

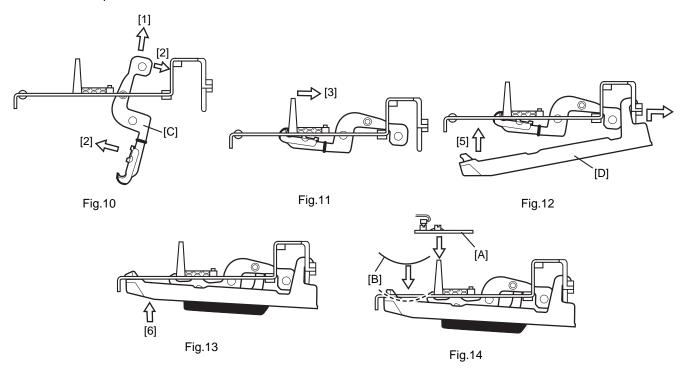


# $\langle \mathsf{BOTTOM} \ \mathsf{VIEW} \rangle$




- [230]: Bind Head Screw 4.0X14 MFZN2Y (EG340210)
- [240]: Bind Head Tapping Screw-1 3.5X12 MFZN2Y (EP030240)
- [250]: Bind Head Screw-B 3.0X6 MFZN2BL (EG330360)
- [292]: Bind Head Tapping Screw-1 3.5X12 MFZN2Y (EP030240)
- [300]: Bind Head Screw 5.0X20 MFZN2BL (VB857600)

Fig.6


# 13. Keyboard Disassembly Procedure

- 13-1 Remove the circuit board marked [A], and then remove the key spring marked [B]. (Fig. 7)
- 13-2 Press the part marked [D'] in the direction shown in figure 9, then remove the key marked [D] and the hammer assembly marked [C]. (Fig. 8, Fig. 9)
- 13-3 The black keys can be disassenbled by following the same procedure.



# 14. Keyboard Assembly Procedure

- 14-1 Insert the hammer assembly marked [C] in the frame in the direction marked [1]. (Fig. 10)
- 14-2 Place the hammer assembly as shown in figures10 and 11.
- 14-3 Place the white key in the order of [4] and [5]. (Fig. 12)
- 14-4 Place doun on the white key in the direction marked [6] shown in figure 13.
- 14-5 Attach the key spring marked [B], and then place the circuit board marked [A]. (Fig. 14)
- 14-6 The black keys can be disassenbled by following the same procedure.



# **LSI PIN DESCRIPTION**

# • HD64F7045F28 (XW419A00) CPU

| PIN<br>NO. | NAME           | I/O        | FUNCTION                                                | PIN<br>NO. | NAME                | I/O        | FUNCTION                                                     |
|------------|----------------|------------|---------------------------------------------------------|------------|---------------------|------------|--------------------------------------------------------------|
| 1          | /WRHH          | 0          | HH write                                                | 73         | D15                 | I/O        |                                                              |
| 2 3        | PE14<br>/WRHL  | I/O<br>O   | LCD data 6 input / output                               | 74<br>75   | D14                 | I/O<br>I/O | Data bus                                                     |
| 4          | PA21           | ΙΫ́        | MLAN insert detect                                      | 76         | D13<br>D12          | 1/0        |                                                              |
| 5          | PE15           | I/O        | LCD data 7 input / output                               | 77         | VCC77               | -          | Power supply                                                 |
| 6          | VSS6           | -          | Ground                                                  | 78         | D11                 | I/O        | Data bus                                                     |
| 7<br>8     | A0<br>A1       | 0          |                                                         | 79<br>80   | VSS79<br>D10        | 1/0        | Ground                                                       |
| 9          | A2             | Ö          | Address bus                                             | 81         | D10                 | 1/0        |                                                              |
| 10         | A3             | 0          |                                                         | 82         | D8                  | I/O        | Data bus                                                     |
| 11         | A4             | 0          | Danier annualis                                         | 83         | D7                  | 1/0        |                                                              |
| 12<br>13   | VCC12<br>A5    | ō          | Power supply Address bus                                | 84<br>85   | D6<br>VCC85         | 1/0        | Power supply                                                 |
| 14         | VSS14          | -          | Ground                                                  | 86         | D5                  | I/O        | Data bus                                                     |
| 15         | A6             | 0          |                                                         | 87         | VSS87               | -          | Ground                                                       |
| 16         | A7             | 0          |                                                         | 88         | D4                  | 1/0        |                                                              |
| 17<br>18   | A8<br>A9       | 0          |                                                         | 89<br>90   | D3<br>D2            | I/O<br>I/O | Data bus                                                     |
| 19         | A10            | lő         |                                                         | 91         | D1                  | ľ/O        | Data bus                                                     |
| 20         | A11            | 0          | Address bus                                             | 92         | D0                  | I/O        |                                                              |
| 21         | A12            | 0          |                                                         | 93         | VSS93               | - 1        | Ground                                                       |
| 22<br>23   | A13<br>A14     | 0          |                                                         | 94<br>95   | XTAL<br>MD3         |            | Crystal oscillator<br>Mode select                            |
| 24         | A15            | ő          |                                                         | 96         | EXTAL               | l i        | Crystal oscillator                                           |
| 25         | A16            | Ö          |                                                         | 97         | MD2                 | i          | Mode select                                                  |
| 26         | VCC26          | -          | Power supply                                            | 98         | NMI                 | -          | Non-maskable interrupt                                       |
| 27<br>28   | A17<br>VSS28   | 0          | Address bus<br>Ground                                   | 99         | VCC99/FWP99<br>PA16 | ī          | Power supply<br>Encoder 1B input                             |
| 29         | PA20           | l ī        | Encoder 2A input                                        | 100        | PA10                | l i        | Encoder 18 input Encoder 1A input                            |
| 30         | PA19           | i          | Encoder 2B input                                        | 102        | MD1                 | i          | Mode select                                                  |
| 31         | PB2            | 0          | Row address strobe                                      | 103        | MD0                 | I          | Mode select                                                  |
| 32         | PB3<br>PA18    | 0          | Column address strobe (low)                             | 104        | PLLVCC              | -          | PLL power supply                                             |
| 33<br>34   | PA 18          | 0          | Host off line detect input Column address strobe (high) | 105<br>106 | PLLCAP<br>PLLVSS    | -          | PLL capacitor PLL ground                                     |
| 35         | VSS35          | -          | Ground                                                  | 107        | PA15                | 0          | CPU clock out                                                |
| 36         | PB5            | 0          | DRAM read/write                                         | 108        | /RES                | -          | Reset                                                        |
| 37         | A18            | 0          | Address bus                                             | 109        | TIOCOA<br>PE1       |            | A/D jack insert detect interrupt request input<br>Smart MINS |
| 38<br>39   | A19<br>A20     | 0          | Address bus                                             | 111        | PE1                 | ¦          | Model detection                                              |
| 40         | VCC40          | -          | Power supply                                            | 112        | VCC112              | :          | Power supply                                                 |
| 41         | A21            | 0          | Address bus                                             | 113        | PE3                 | 1          | Smart busy input                                             |
| 42         | VSS42          | -          | Ground                                                  | 114        | PE4                 | 0          | MLAN reset interrupt request input                           |
| 43<br>44   | /RD<br>/WDTOVF | 0          | Read<br>Not used                                        | 115<br>116 | PE5<br>PE6          | Ĭ          | 1M clock out<br>Model detection                              |
| 45         | D31            | I/O        | Data bus                                                | 117        | VSS117              | :          | Ground                                                       |
| 46         | D30            | I/O        |                                                         | 118        | AN0                 | - 1        | ]                                                            |
| 47         | /WRH           | 0          | High write                                              | 119        | AN1                 | !          | Analas issut                                                 |
| 48<br>49   | WRL<br>/CS1    | 0          | Low write<br>Chip Select 1                              | 120<br>121 | AN2<br>AN3          |            | Analog input                                                 |
| 50         | CS0            | ŏ          | Chip Select 0                                           | 122        | AN4                 | i          |                                                              |
| 51         | PA9            | !          | MLAN MIDI interrupt request                             | 123        | AN5                 | I          |                                                              |
| 52         | PA8            |            | Interrupt request                                       | 124        | AVSS                | -          | Analog ground                                                |
| 53<br>54   | /CS3<br>/CS2   | 0          | Chip select 3<br>Chip select 2                          | 125<br>126 | AN6<br>AN7          |            | Analog input                                                 |
| 55         | VSS55          | _          | Ground                                                  | 127        | AVREF               | :          | Analog reference voltage                                     |
| 56         | D29            | I/O        |                                                         | 128        | AVCC                | -          | Analog power supply                                          |
| 57         | D28            | 1/0        | Data bus                                                | 129        | VSS129<br>RXD0      | ī          | Ground<br>MIDI input                                         |
| 58<br>59   | D27<br>D26     | I/O<br>I/O | Data bus                                                | 130<br>131 | TXD0                | 0          | MIDI input MIDI output                                       |
| 60         | D25            | I/O        |                                                         | 132        | /IRQ0               | Ĭ          | Plug in sireal interrupt request input                       |
| 61         | VSS61          | -          | Ground                                                  | 133        | RXD1                | 1          | HOST input                                                   |
| 62         | D24<br>VCC63   | I/O        | Data bus                                                | 134        | TXD1                | 0          | HOST output                                                  |
| 63<br>64   | D23            | I/O        | Power supply                                            | 135<br>136 | VCC135<br>/IRQ1     | ī          | Power supply MLAN MIDI interrupt input                       |
| 65         | D23            | 1/0        |                                                         | 137        | PE7                 | i          | Smart Vprt Input                                             |
| 66         | D21            | I/O        |                                                         | 138        | PE8                 | I/O        | LCD data 0 input / output                                    |
| 67         | D20            | 1/0        | Data bus                                                | 139        | PE9                 | 1/0        | LCD data 1 input / output                                    |
| 68<br>69   | D19<br>D18     | I/O<br>I/O |                                                         | 140<br>141 | PE10<br>VSS141      | 1/0        | LCD data 2 input / output<br>Ground                          |
| 70         | D16            | 1/0        |                                                         | 141        | PE11                | 1/0        | LCD data 3 input / output                                    |
| 71         | VSS71          | -          | Ground                                                  | 143        | PE12                | I/O        | LCD data 4 input / output                                    |
| 72         | D16            | I/O        | Data bus                                                | 144        | PE13                | I/O        | LCD data 5 input / output                                    |

# • HD63B01Y0RCE0F (XM234A00) CPU (PKS)

| PIN<br>NO. | NAME      | I/O | FUNCTION                     | PIN<br>NO. | NAME   | I/O | FUNCTION                      |
|------------|-----------|-----|------------------------------|------------|--------|-----|-------------------------------|
| 1          | /NMI      | I   | Non-maskable interrupt       | 33         | M1/S8  | ı   | Make contact of key receive/  |
| 2          | E         | 0   |                              | 34         | M0/S7  | I   | Switch receive                |
| 3          | D#        | 0   |                              | 35         | Vss    |     | Ground                        |
| 4          | D         | 0   | Key scan drive               | 36         | F      | 0   | 1                             |
| 5          | C#        | 0   |                              | 37         | F#     | 0   |                               |
| 6          | CL        | 0   |                              | 38         | G      | 0   |                               |
| 7          | PULL 1    |     |                              | 39         | G#     | 0   | Key scan drive                |
| 8          | PULL 2    |     |                              | 40         | Α      | 0   |                               |
| 9          | LC.AE//FS | - 1 | connected to ground          | 41         | A#     | 0   |                               |
| 10         | /REPEAT   | - 1 | Auto repeat (L:on, H:off)    | 42         | В      | 0   |                               |
| 11         | /KOF-REQ  | - 1 | Key off request              | 43         | С      | 0   | J                             |
| 12         | SW1       | - 1 | Switch 1 (L: on, H: off)     | 44         | LC//AE | - 1 | connected to +5V              |
| 13         | SW2       | - 1 | Switch 2 (L: on, H: off)     | 45         | B6/S6  | I   |                               |
| 14         | /IS       | - 1 | Input strobe                 | 46         | B5/S5  | I   |                               |
| 15         | /OS       | - 1 | Output strobe                | 47         | B4/S4  | I   | Break contact of key receive/ |
| 16         | SW3       | - 1 | Switch 3 (L: on, H: off)     | 48         | B3/S3  | I   | Switch receive                |
| 17         | SW4       | - 1 | Switch 4 (L: on, H: off)     | 49         | B2/S2  | I   |                               |
| 18         | DOUT0     | 0   |                              | 50         | B1/S1  | I   |                               |
| 19         | DOUT1     | 0   |                              | 51         | B0/S0  | I   |                               |
| 20         | DOUT2     | 0   |                              | 52         | Se     | 0   |                               |
| 21         | DOUT3     | 0   |                              | 53         | Sd     | 0   |                               |
| 22         | DOUT4     | 0   | Data output                  | 54         | Sc     | 0   | Switch drive                  |
| 23         | DOUT5     | 0   |                              | 55         | Sb     | 0   |                               |
| 24         | DOUT6     | 0   |                              | 56         | Sa     | 0   | J                             |
| 25         | DOUT7     | 0   | J                            | 57         | Е      |     | Not used                      |
| 26         | Vcc       |     | Power supply (+5V)           | 58         | Vss    |     | Ground                        |
| 27         | Sf        | 0   | Switch drive                 | 59         | XTAL   |     | Not used                      |
| 28         | M5/S13    | - 1 |                              | 60         | EXTAL  | I   | 8 MHz clock                   |
| 29         | M4/S12    | I   |                              | 61         | MP0    | - 1 | Mode program 0                |
| 30         | M3/S10    | I   | Make contact of key receive/ | 62         | MP1    | I   | Mode program 1                |
| 31         | M2/S9     | - 1 | Switch receive               | 63         | /RES   | I   | Initial clear                 |
| 32         | M1/S8     | - 1 |                              | 64         | /STBY  | I   | Stanby-mode signal            |

# • μ PD63200GS (XM145A00) DAC (Digital to Analog Converter)

| - •        | - 1 - 2 - 2 - 2 - 2 - 1 - 1 - 1 - 1 - 2 - 2 |     |                         |            |        |     |                                    |  |
|------------|---------------------------------------------|-----|-------------------------|------------|--------|-----|------------------------------------|--|
| PIN<br>NO. | NAME                                        | I/O | FUNCTION                | PIN<br>NO. | NAME   | I/O | FUNCTION                           |  |
| 1          | 4/8F                                        |     | 4/8 Fs selection        | 9          | R. REF |     | Channel R voltage reference        |  |
| 2          | D. GND                                      |     | Digital ground          | 10         | L. REF |     | Channel L voltage reference        |  |
| 3          | 16 BIT                                      | I   | 16 bit/18 bit selection | 11         | L. OUT | 0   | Channel L output                   |  |
| 4          | D. VDD                                      |     | Digital power supply    | 12         | A. GND |     | Analog ground                      |  |
| 5          | A. GND                                      |     | Analog ground           | 13         | WDCK   | - 1 | Word clock                         |  |
| 6          | R. OUT                                      | 0   | Channel R output        | 14         | RSI    | - 1 | Channel R series input             |  |
| 7          | A. VDD                                      |     | Analog power supply     | 15         | SI/LSI | 1   | Series input/Channel L series nput |  |
| 8          | A. VDD                                      |     |                         | 16         | CLK    | - 1 | Clock                              |  |

# • JG710069 (XM326B00) DDE1 (DAC Dynamic Range Enhancer)

| PIN<br>NO. | NAME  | 1/0 | FUNCTION             | PIN<br>NO. | NAME   | I/O | FUNCTION             |
|------------|-------|-----|----------------------|------------|--------|-----|----------------------|
| 1          | CLK   | - 1 | Master clock         | 9          | SH 0   | 0   | N.C.                 |
| 2          | SYW   | - 1 | Sync signal          | 10         | SH 1   | 0   | N.C.                 |
| 3          | MIN 1 | - 1 | Signal input         | 11         | LE     | 0   | Latch enable for DAC |
| 4          | MIN 0 | - 1 | Signal input         | 12         | VDD    |     | Power supply         |
| 5          | Vss   |     | Ground               | 13         | DACO 0 | 0   | Output (DAC)         |
| 6          | SEL 1 | - 1 | Mode select          | 14         | DACO 1 | 0   | Output (DAC)         |
| 7          | SEL 0 | I   | Mode select          | 15         | DCLK   | 0   | Clock for DAC        |
| 8          | SUP   | - 1 | 1 bit shift up input | 16         | ICN    | - 1 | Initial clear        |

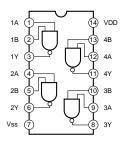
# • TC203C760HF-002 (XS725A00) SWP30B AWM Tone Generator coped with MEG) Standard Wave Processor

| PIN<br>NO.           | NAME                    | I/O               | FUNCTION                                                  | PIN<br>NO.        | NAME                  | I/O               | FUNCTION                                                                                     |
|----------------------|-------------------------|-------------------|-----------------------------------------------------------|-------------------|-----------------------|-------------------|----------------------------------------------------------------------------------------------|
| 1                    | Vss<br>CA0              | 1                 | (Ground)                                                  | 121<br>122        | VSS<br>HMD0           | 1/0               | (Ground)                                                                                     |
| 2<br>3<br>4          | CA0<br>CA1<br>CA2       |                   |                                                           | 123<br>124        | HMD1<br>HMD2          | I/O<br>I/O<br>I/O |                                                                                              |
| 5                    | CA3<br>CA4              |                   |                                                           | 125<br>126        | HMD3<br>HMD4          | I/O               |                                                                                              |
| 6<br>7<br>8          | CA5                     |                   | Address bus of internal register                          | 127<br>128        | HMD5                  | I/O<br>I/O<br>I/O | Wave memory data bus /I Inner 16 bits\                                                       |
| 9                    | CA6<br>CA7              |                   |                                                           | 129               | HMD6<br>HMD7<br>HMD8  | I/O               | Wave memory data bus (Upper 16 bits)                                                         |
| 10<br>11             | CA8<br>CA9              |                   |                                                           | 130<br>131        | HMD8<br>HMD9          | I/O<br>I/O<br>I/O |                                                                                              |
| 12<br>13             | CA10<br>CA11            | i                 | J                                                         | 132<br>133        | HMD10<br>HMD11        | I/O               |                                                                                              |
| 14<br>15             | VSS<br>CD0              | 1/0               | (Ground)                                                  | 134<br>135        | HMD12<br>HMD13        | 1/0               |                                                                                              |
| 16<br>17             | CD1<br>CD2              | I/O<br>I/O        |                                                           | 136<br>137        | HMD14<br>HMD15        | I/O<br>I/O        | J                                                                                            |
| 18<br>19             | CD3<br>CD4              | I/O<br>I/O        |                                                           | 138<br>139        | VSS<br>HMA0           | o.                | (Ground)                                                                                     |
| 20<br>21             | CD5<br>CD6              | I/O<br>I/O        |                                                           | 140<br>141        | HMA1<br>HMA2          | 0                 |                                                                                              |
| 22<br>23<br>24       | CD7<br>CD8              | I/O<br>I/O        | Data bus of internal register                             | 142<br>143        | HMA3<br>HMA4          | 0 0               |                                                                                              |
| 24<br>25             | CD9<br>CD10             | I/O<br>I/O<br>I/O |                                                           | 144<br>145        | HMA5<br>HMA6          | 0                 |                                                                                              |
| 25<br>26<br>27<br>28 | CD11<br>CD12            | I/O               |                                                           | 146<br>147        | HMA7<br>HMA8          | Ö                 |                                                                                              |
| 28<br>29             | CD13<br>CD14            | I/O<br>I/O        |                                                           | 148<br>149        | HMA9<br>HMA10         | 0                 |                                                                                              |
| 29<br>30<br>31       | VDD<br>VSS              |                   | (Power supply)<br>(Ground)                                | 150<br>151        | VDD<br>VSS            | ļ                 | (Power supply)<br>(Ground)                                                                   |
| 32                   | CD15<br>CSN             | I/O<br>I          | Chip select                                               | 152<br>153        | HMA11<br>HMA12        | 0                 | Wave memory address bus                                                                      |
| 33<br>34<br>35<br>36 | WRN<br>RDN              | i                 | Write strobe<br>Read strobe                               | 154<br>155        | HMA13<br>HMA14        | 0                 |                                                                                              |
| 37                   | VDD<br>SYSH0            |                   | (Power supply)                                            | 156<br>157        | HMA15<br>HMA16        | Ŏ<br>O            |                                                                                              |
| 38<br>39             | SYSH1<br>SYSH2          | ŏ                 |                                                           | 158<br>159        | HMA17<br>HMA18        | 000               |                                                                                              |
| 40                   | SYSH3<br>SYSH4          | 000               | NSYS/LNSYS upper 16 bits output                           | 160<br>161        | HMA19<br>HMA20        | ŏ                 |                                                                                              |
| 41<br>42<br>43       | SYSH5<br>SYSH6          | ŏ                 |                                                           | 162<br>163        | HMA21<br>HMA22        | 0                 |                                                                                              |
| 43<br>44<br>45       | SYSH7<br>KONO0          | 000               | Į                                                         | 164<br>165        | HMA23                 | 00                |                                                                                              |
| 45<br>46<br>47       | KONO1<br>KONO2          | 00000000000       | Key on data                                               | 166<br>167        | HMA24<br>VSS<br>MRASN | 0                 | (Ground)                                                                                     |
| 48<br>49             | KONO3                   | 0                 | )                                                         | 168               | MCASN                 | 0                 | RAS when DRAM(s) is connected to wave memory<br>CAS when DRAM(s) is connected to wave memory |
| 50<br>51             | VSS<br>SYSL0            | I/O<br>I/O        | (Ground)                                                  | 169<br>170        | MOEN<br>MWEN          | 0                 | Wave memory output enable Wave memory write enable                                           |
| 52                   | SYSL1<br>SYSL2          | 1/0               | NOVO: WNOVO A A A COLO                                    | 171<br>172        | VSS<br>LMD0           | I/O               | (Ground)                                                                                     |
| 53<br>54<br>55       | SYSL3<br>SYSL4          | 1/O<br>1/O<br>1/O | NSYS input/LNSYS output lower 8 bits                      | 173<br>174        | LMD1<br>LMD2          | I/O<br>I/O<br>I/O |                                                                                              |
| 56                   | SYSL5<br>SYSL6          | I/O<br>I/O        |                                                           | 175<br>176        | LMD3<br>LMD4          | I/O               |                                                                                              |
| 57<br>58             | SYSL7<br>KONI0          | I/O<br>I          |                                                           | 177<br>178        | LMD5<br>LMD6          | I/O<br>I/O        |                                                                                              |
| 59<br>60             | KONI1<br>VDD            |                   | Key on data input     (Power supply)                      | 179<br>180        | LMD7<br>VDD           | I/O               | Wave memory data bus (Lower 16 bits) (Power supply) (Ground)                                 |
| 61<br>62             | VSS<br>KONI2            | ı                 | (Ground)                                                  | 181<br>182        | VSS<br>LMD8           | I/O               | (Ground)                                                                                     |
| 63<br>64             | KONI3<br>DAC0           | 0                 | DAC output                                                | 183<br>184        | LMD9<br>LMD10         | I/O<br>I/O        |                                                                                              |
| 65<br>66             | DAC1<br>WCLK            | 0                 | DAC0/DAC1 word clock                                      | 185<br>186        | LMD11<br>LMD12        | I/O<br>I/O        |                                                                                              |
| 67<br>68             | MELO0<br>MELO1          | 0                 |                                                           | 187<br>188        | LMD13<br>LMD14        | I/O<br>I/O        |                                                                                              |
| 69<br>70             | MELO2<br>MELO3          | Ŏ<br>O            | MEL wave data output                                      | 189<br>190        | LMD15<br>VSS          | Ϊ/O               | (Ground)                                                                                     |
| 71<br>72             | MELO4<br>MELO5          | 0                 |                                                           | 191<br>192        | LMA0<br>LMA1          | 0                 |                                                                                              |
| 71<br>72<br>73<br>74 | MELO6<br>MELO7          | 00000000000       | J                                                         | 193<br>194        | LMA2<br>LMA3          | 0                 | <b>i</b>                                                                                     |
| 75<br>76<br>77       | VDD<br>ADLR             | 0                 | (Power supply) ADC word clock                             | 195<br>196        | LMA4<br>LMA5          | 0                 |                                                                                              |
| 77<br>78             | MELIO<br>MELI1          | Ĭ                 | )                                                         | 197<br>198        | LMA6<br>LMA7          | 000               |                                                                                              |
| 79<br>80             | MELI2<br>MELI3          | i                 | MEL wave data input                                       | 199<br>200        | LMA8<br>LMA9          | 00                |                                                                                              |
| 81<br>82             | MELIA<br>MELIA<br>MELI5 |                   | wave data input                                           | 201<br>202        | LMA10<br>LMA11        | 000               |                                                                                              |
| 83<br>84             | MELI6<br>MELI7          |                   |                                                           | 202<br>203<br>204 | VSS<br>LMA12          | 0                 | (Ground)                                                                                     |
| 85<br>86             | VSS<br>RCASN            | 0                 | (Ground) DRAM column address strobe (RAS signal)          | 205               | LMA13<br>LMA14        | 000               | Wave memory address bus (Lower data memory)                                                  |
| 87                   | RA8                     | 0                 | DIVAINI COIGITITI address strope (KAO signal)             | 206<br>207<br>208 | LMA15                 | 00                |                                                                                              |
| 88<br>89             | RA7<br>RA6              | 0                 | (Downer graph )                                           | 208<br>209        | LMA16<br>LMA17        | 0                 | (Davier aurah)                                                                               |
| 90<br>91             | VDD<br>VSS              |                   | (Power supply)<br>(Ground)                                | 210<br>211        | VDD<br>VSS            |                   | (Power supply)<br>(Ground)                                                                   |
| 92<br>93             | RA5<br>RA4              | 000               | DRAM address bus                                          | 212<br>213        | LMA18<br>LMA19        | 0                 |                                                                                              |
| 94<br>95             | RA3<br>RA2              | 0                 |                                                           | 214<br>215        | LMA20<br>LMA21        | 0                 |                                                                                              |
| 96<br>97             | RA1<br>RA0              | 0                 | J                                                         | 216<br>217        | LMA22<br>LMA23        | 0                 |                                                                                              |
| 98<br>99             | RRASN<br>RWEN           | 0                 | DRAM row address strobe (RAS signal)<br>DARM write enable | 218<br>219        | LMA24<br>VSS          | 0                 | (Ground)                                                                                     |
| 100<br>101           | VSS<br>RD7              | I/O               | (Ground)                                                  | 220<br>221        | SYO<br>SYOD           | 0                 | Sync. signal for master clock<br>Sync. signal for HCLK/QCLK                                  |
| 102<br>103           | RD6<br>RD5              | I/O<br>I/O        |                                                           | 222<br>223        | QCLK<br>HCLK          | 0                 | 1/12 master clock (64Fs)<br>1/6 master clock (128Fs)                                         |
| 104<br>105           | RD4<br>RD3              | I/O<br>I/O        |                                                           | 224<br>225        | CK256<br>SYSCLK       | 0                 | 1/3 master clock (256Fs)<br>1/2 master clock (384Fs)                                         |
| 106<br>107           | RD2<br>RD1              | I/O<br>I/O        |                                                           | 226<br>227        | VDD<br>SYI            | 1                 | (Power supply) Sync. clock                                                                   |
| 108<br>109           | RD0<br>VSS              | Ϊ/Ö               | (Ground)                                                  | 228<br>229        | MCLKI<br>MCLKO        | i<br>O            | Master clock input<br>Master clock output                                                    |
| 110<br>111           | RD17<br>RD16            | I/O<br>I/O        | DRAM data bus                                             | 230<br>231        | VDD<br>XIN            | 1                 | (Power supply) Crystal osc. input                                                            |
| 112<br>113           | RD15<br>RD14            | I/O<br>I/O        |                                                           | 232<br>233        | XOUT<br>VSS           | Ó                 | Crystal osc. output<br>(Ground)                                                              |
| 114<br>115           | RD13<br>RD12            | I/O<br>I/O        |                                                           | 234<br>235        | ICN<br>CHIP2          |                   | Initial clear<br>2 chips mode enable                                                         |
| 116<br>117           | RD11<br>RD10            | 1/O<br>1/O        |                                                           | 236<br>237        | SLAVE<br>TESTON       |                   | Master/Slave select when 2 chips mode                                                        |
| 118<br>119           | RD9<br>RD8              | 1/0               |                                                           | 238               | ACIN<br>DCTEST        |                   | Test pin                                                                                     |
| 120                  | VDD                     | 40                | (Power supply)                                            | 239<br>240        | VDD                   |                   | (Power supply)                                                                               |

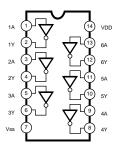
# • MN101C027YB (XS711200) CPU

| PIN |       | ı ` | (3711200) CFO                 |            |      |     |                           |
|-----|-------|-----|-------------------------------|------------|------|-----|---------------------------|
| NO. | NAME  | I/O | FUNCTION                      | PIN<br>NO. | NAME | I/O | FUNCTION                  |
| 1   | S1    | ı   |                               | 33         | S12  | ı   |                           |
| 2   | S2    | I   |                               | 34         | S13  | ı   | Switch matrix data        |
| 3   | S3    | I   | Switch matrix data            | 35         | S14  | ı   |                           |
| 4   | S4    | I   |                               | 36         | TXD  | 0   | MIDI transmit data        |
| 5   | S5    | I   |                               | 37         | S15  | I   |                           |
| 6   | VREF+ | -   | Power supply (+5V, analog)    | 38         | S16  | I   | Switch matrix data        |
| 7   | VDD   | -   | Power supply (+5V)            | 39         | S17  | I   |                           |
| 8   | OSC2  | 0   | Crystal oscillator (8MHz)     | 40         | S18  | I   | J                         |
| 9   | OSC1  | I   | Crystal oscillator (8MHz)     | 41         | L16  | 0   |                           |
| 10  | VSS   | -   | Ground                        | 42         | L17  | 0   |                           |
| 11  | XI    | I   | Not used                      | 43         | L18  | 0   |                           |
| 12  | XO    | 0   | Not used                      | 44         | L19  | 0   |                           |
| 13  | MMOD  | I   | Memory mode select (Grounded) | 45         | L8   | 0   |                           |
| 14  | RD0   | 0   | Rotary encoder data           | 46         | L9   | 0   | LED drive data            |
| 15  | RXD   | I   | MIDI receive data             | 47         | L10  | 0   |                           |
| 16  | D0    | 0   |                               | 48         | L11  | 0   |                           |
| 17  | D1    | 0   |                               | 49         | L12  | 0   |                           |
| 18  | D2    | 0   | LED and switch drive data     | 50         | L13  | 0   |                           |
| 19  | D3    | 0   |                               | 51         | L14  | 0   |                           |
| 20  | D4    | 0   |                               | 52         | L15  | 0   | J                         |
| 21  | /RST  | I   | Reset                         | 53         | L7   | 0   |                           |
| 22  | D5    | 0   |                               | 54         | L6   | 0   |                           |
| 23  | D6    | 0   |                               | 55         | L5   | 0   |                           |
| 24  | D7    | 0   | LED and switch drive data     | 56         | L4   | 0   | LED and switch drive data |
| 25  | D8    | 0   |                               | 57         | L3   | 0   |                           |
| 26  | D9    | 0   |                               | 58         | L2   | 0   |                           |
| 27  | S6    | I   |                               | 59         | L1   | 0   |                           |
| 28  | S7    | I   |                               | 60         | L0   | 0   | <b>]</b> J                |
| 29  | S8    | I   | Switch matrix data            | 61         | VREF | -   | Grounded                  |
| 30  | S9    | I   |                               | 62         | AD0  | I   | Analog input              |
| 31  | S10   | I   |                               | 63         | AD1  | I   | Analog input              |
| 32  | S11   | I   |                               | 64         | S0   | I   | Switch matrix data        |

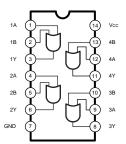
# • MBCG46183-129 (XV833A00) Gate Array


| PIN<br>NO | NAME    | I/O | FUNCTION                             | PIN<br>NO                 | NAME   | I/O | FUNCTION              |
|-----------|---------|-----|--------------------------------------|---------------------------|--------|-----|-----------------------|
| 1         | D5      | I/O |                                      | 25                        | TX31   | 0   | Transmit Data 31      |
| 2         | D6      | I/O | ≻ Data Bus                           | 26                        | RX32   | - 1 | Receive Data 32       |
| 3         | D7      | I/O | J                                    | 27                        | TX32   | 0   | Transmit Data 32      |
| 4         | /IRQ0   | I/O | Interrupt Request Port 0             | 28                        | RX33   | - 1 | Receive Data 33       |
| 5         | /IRQ1   | I/O | Interrupt Request Port 1             | 29                        | TX33   | I/O | Transmit Data 33      |
| 6         | VSS     | -   | Ground                               | 30                        | /IC    | - 1 | Initial Clear         |
| 7         | /IRQ2   | I/O | Interrupt Request Port 2             | 31                        | VSS    | -   | Ground                |
| 8         | /IRQ3   | I/O | Interrupt Request Port 3             | 32                        | XI     | - 1 | Quartz Crystal Input  |
| 9         | /RD     | - 1 | Read Signal Input                    | 33                        | VSS    | -   | Ground                |
| 10        | /WR     | - 1 | Write Signal Input                   | 34                        | XO     | I/O | Quartz Crystal Output |
| 11        | /CE     | - 1 | Chip Enable Input                    | Chip Enable Input 35 A0 I |        | )   |                       |
| 12        | /ASTB   | - 1 | Address Strobe (Not used: to ground) | 36                        | A1     | - 1 |                       |
| 13        | TESTSIO | - 1 | Input with Pull-down Resistor (50k)  | 37                        | A2     | - 1 | > Address Bus         |
| 14        | RX0     | - 1 | Receive Data 0                       | 38                        | A3     | - 1 |                       |
| 15        | TX0     | 0   | Transmit Data 0                      | 39                        | A4     | - 1 |                       |
| 16        | RX1     | - 1 | Receive Data 1                       | 40                        | A5     | - 1 |                       |
| 17        | TX1     | 0   | Transmit Data 1                      | 41                        | CPUCLK | - 1 | CPU Clock             |
| 18        | VSS     | -   | Ground                               | 42                        | VSS    | -   | Ground                |
| 19        | VDD     | -   | Power Supply                         | 43                        | VDD    | -   | Power Supply          |
| 20        | RX2     | I   | Receive Data 2 44 D0 I/O             |                           |        |     |                       |
| 21        | TX2/BO2 | 0   | Transmit Data 2                      | 45                        | D1     | I/O |                       |
| 22        | RX30    | I   | Receive Data 30                      | 46                        | D2     | I/O |                       |
| 23        | TX30    | 0   | Transmit Data 30                     | 47                        | D3     | I/O |                       |
| 24        | RX31    | ı   | Receive Data 31                      | 48                        | D4     | I/O | IJ                    |

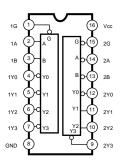
# ● PCM1800 (XU770A00) A/D Converter


| PIN<br>NO. | NAME   | I/O | FUNCTION                      | PIN<br>NO.                            | NAME  | I/O | FUNCTION                            |
|------------|--------|-----|-------------------------------|---------------------------------------|-------|-----|-------------------------------------|
| 1          | VINL   | - 1 | Analog input (L ch.)          | 13                                    | LRCK  | I/O | Sampling clock input/output         |
| 2          | VREF1  | -   | Reference 1 decoupling cap.   | 14                                    | BCK   | I/O | Bit clock input/output              |
| 3          | REFCOM | -   | Reference decoupling common   | 15                                    | DOUT  | 0   | Audio data output                   |
| 4          | VREF2  | -   | Reference 2 decoupling cap.   | 16                                    | SYSCK | 1   | System clock input                  |
| 5          | VINR   | 1   | Analog input (R ch.)          | Analog input (R ch.) 17               |       | -   | Digital ground                      |
| 6          | RSTB   | 1   | Reset input active "L"        | 18                                    | VDD   | -   | Power supply +5V                    |
| 7          | BYPAS  | 1   | LCF bypass control            | 19                                    | CINNR | -   | Anti-aliasing filter cap. (-) R ch. |
| 8          | FMT0   | 1   | Audio data format 0           | 20                                    | CINPR | -   | Anti-aliasing filter cap. (+) R ch. |
| 9          | FMT1   | 1   | Audio data format 1           | 21                                    | CINNL | -   | Anti-aliasing filter cap. (-) L ch. |
| 10         | MODE0  | 1   | Master/Slave mode selection 0 | Master/Slave mode selection 0 22 CINP |       | -   | Anti-aliasing filter cap. (+) L ch. |
| 11         | MODE1  | 1   | Master/Slave mode selection 1 | 23                                    | VCC   | -   | Analog power supply                 |
| 12         | FSYNC  | I/O | Frame sync. input/output      | 24                                    | AGND  | -   | Analog ground                       |

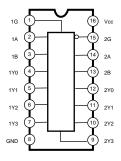
# ■ IC BLOCK DIAGRAM


● TC74VHC00F(XT229A00) IC73 MAND



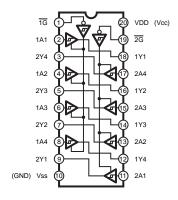

TC74VH04F (XM332A00) Inverter




TC74VH32F(XN963A00)
 IC29, IC55
 OR

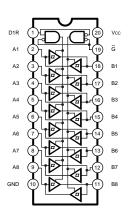


TC74LVC139FPEL(XS048A00)
 IC26, IC42
 Demultiplexer



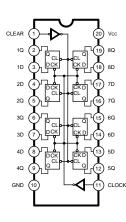

TC74VHC157FF(XN966A00) IC103 Multiplexer



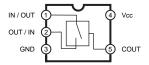

• TC74VHC244F(XN969A00)

IC51 Bus Buffer

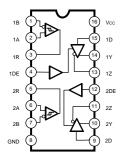



• TC74VHC245F(XT487A00) IC11

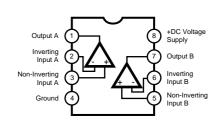
Trabsceiver



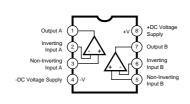

 TC74VHC273F(XN971A00)IC52 SN74HC273NSR(XH223A00) IC27, IC28


D-FF

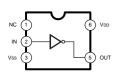



TC7S66FF(XR682A00) IC30 Analog Switch




M5M34051FP(XV103A00) IC12 Line Transceiver

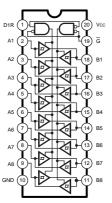



- NJM4556AMT1(XQ138A00) IC23
- **Operation Amplifier**

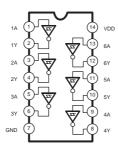


- NJM4556AD (XQ824A00)
   μPC4570G2 (XF291A00)
- μPC4570C (XC520A00)
   IC62,IC65,IC73
   Dual Operational Amplifier

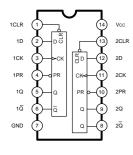



• SC7SU04FEL (XI348A00) IC21 Inverter



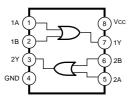

- TC74VHCT245AF(XV242A00)
- TC74VHCT245AFT(XT744A00) SN74HC245NSR(XD838A00) IC31

Buffer

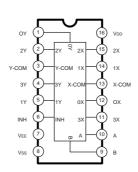

Octo1 3-state Bus Transceiver



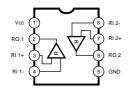
• TC74HC14AF-TP1 (XD657A00) IC8,IC17,IC20,IC22,IC32,IC100 Hex Inverter



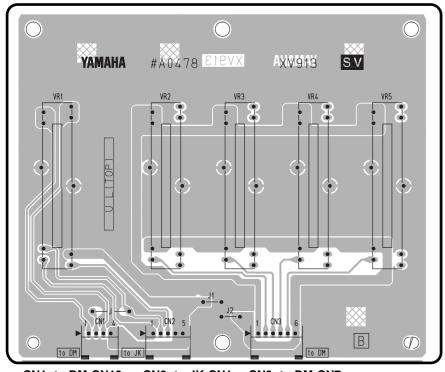

● TC74HC74AF (XP003A00) IC18,IC19 Dual D-Type Flip-Flop




|    | INP | OUTP | UTS |    |    |
|----|-----|------|-----|----|----|
| PR | CLR | CLK  | D   | Q  | Q  |
| L  | Н   | ×    | ×   | Н  | L  |
| Н  | L   | ×    | ×   | L  | Н  |
| L  | L   | ×    | ×   | н  | Н  |
| Н  | Н   | f    | Н   | Н  | L  |
| Н  | Н   | f    | L   | L  | Н  |
| Н  | Н   | L    | ×   | Qo | Qc |


• TC7W32FU(TE12L) (XQ173A00) IC75 OR

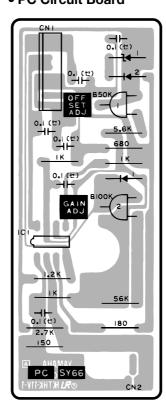



● TC74HC4052AF (XS790A00) IC13,IC14,IC15,IC16 Multiplexer



● **DS90C402M** (XW357A00) IC102 Line Receiver

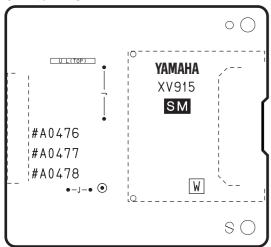



# • SV Circuit Board

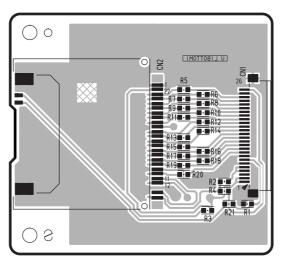


CN1: to DM-CN19 CN2: to JK-CN1 CN3: to DM-CN7

Component side


• PC Circuit Board




Component side

# • SM Circuit Board

# CN1: to DM-CN22



Component side



Pattern side

SV: 2NA-V357680 SM: 2NA-V357710 🔨

# **TEST PROGRAM**

| Test No. | Test Item           | Test Conditions, Judgment Criteria, etc.                                 |
|----------|---------------------|--------------------------------------------------------------------------|
| T1       | RAM READ/WRITE      | OK/NG, (MAIN SRAM/WAVE DRAM)                                             |
| T2       | RAM BATTERY         | OK/NG, 2.7V or more, Less than 3.5V                                      |
| Т3       | WAVE ROM            | OK/NG                                                                    |
| T4       | LCD                 | ON/OFF blinking alternately                                              |
| T5       | PANEL SWITCH/LED    | OK/NG                                                                    |
| T6       | ENCODER             | OK; 0 to +127(0) to -127                                                 |
| T7       | KEYBOARD            | OK, KEY CODE/KEY TOUCH                                                   |
| T8       | KNOB A-2            | OK/NG, 64-127-0-64                                                       |
| Т9       | SLIDER 1-4          | OK/NG, 0-127-0                                                           |
| T12      | CONTROLLER          | OK/NG, 64-127-0-64 (PB), 0-127-0 (MW), 0-107-0 (AT)                      |
| T13      | FOOT CONTROL SWITCH | OK, 0-127-0                                                              |
| T14      | BREATH CONTROLLER   | OK/NG, 127-0-127                                                         |
| T15      | CARD                | OK/NG                                                                    |
| T16      | MIDI IN/OUT/THRU    | OK/NG THRU Confirmation                                                  |
| T17      | HOST SELECT         | OK/NG                                                                    |
| T18      | TO HOST             | OK/NG                                                                    |
|          |                     | OUTPUT(L): +6.0 ± 2 dBm; OUTPUT(R): Less than -72.0 dBm (10 kohm load)   |
| T19      | 1 kHz OUTPUT L      | INDIV(1): +6.0 ± 2 dBm; INDIV(2): Less than-72.0 dBm (10 kohm load)      |
|          |                     | PHONES(L): +5.0 ± 2 dBm; PHONES(R): Less than -64.0 dBm (33 ohm load)    |
|          |                     | OUTPUT(L): Less than -72.0 dBm (10 kohm load); OUTPUT(R): +6.0 ± 2 dBm   |
| T20      | 1 kHz OUTPUT R      | INDIV(1): Less than -72.0 dBm (10 kohm load); INDIV(2): +6.0 $\pm$ 2 dBm |
|          |                     | PHONES(L): Less than -64.0 dBm (33 ohm load); PHONES(R): +5.0 ± 2 dBm    |
| T21      | A/D LEVEL, JACK     | OK                                                                       |
| T22      | A/D -> D/A          | OUTPUT (L, R): +15.0 ± 2 dBm (Line) (10 kohm)                            |
| T23      | PLUG- IN1           | OUTPUT (L, R): +11.5 ± 2 dBm (10 kohm)                                   |
| T24      | PLUG- IN2           | OUTPUT (L, R): +11.5 ± 2 dBm (10 kohm)                                   |
| T25      | mLAN                | OK/NG                                                                    |
| T26      | FACTORY SET         | OK/NG Initialized state                                                  |
| T27      | SWP CH              | 1 kHz, sine wave                                                         |
| Tae      | EXIT (NOISE LEVEL)  | OUTPUT (L, R): Less than -82.0 dBm (10 kohm load)                        |
| T28      | LAIT (NOISE LEVEL)  | PHONES (L, R): Less than -85.0 dBm (33 ohm load)                         |

Measuring instruments: frequency counter, oscilloscope, AC voltmeter (JIS-C curve type), distortion meter (with flat filter), keyboard amplifier, etc.

Jigs: MIDI cable, specially designed expansion board, etc.

#### A. HOW TO ENTER THE TEST PROGRAM

While pressing the [VOICE], [PERFORM] and [STORE] switches, turn on the [POWER ON/OFF] switch. The following message will then appear.

| [EDIT]:AUTO   | [JOB ]:MANUAL           | [EXIT]:Exit |
|---------------|-------------------------|-------------|
| TEST 478) Int | V #. # # E x t V #. # # |             |

In this state, pressing the [EXIT] switch will cancel the test mode and restore the normal state.

#### B. PROCEEDING THROUGH THE TEST PROGRAM

#### AUTO MODE:

When the test program is started, the following display will appear.

| 01: RAM R/W  |                         | [EXIT]:Exit |
|--------------|-------------------------|-------------|
| TEST 478) In | t V #. ## E x t V #. ## | AUTO MODE   |

Select the test number using the [DEC/NO] and [INC/YES] switches.

Press the [ENTER] switch to execute the tests one after another starting from the currently selected number.

If the test result is "OK", the next test will be selected and executed sequentially.

If an error occurs, an error message will appear and the test will be discontinued.

After pressing the [EXIT] switch, choose an appropriate measure to deal with the error by using the [ENTER], [INC/YES] or [EXIT] switch.

Pressing the [ENTER] switch, will automatically execute the test from where the error occurred.

Pressing the [INC/YES] switch, the test will automatically restart at the test following the one where the error occurred.

Pressing the [EXIT] switch, will execute "T28 EXIT" and the testing will come to an end.

### MANUAL MODE:

When the test program is started, the following display will appear.

| 01: RAM R/W      |             | [EXIT]:Exit |
|------------------|-------------|-------------|
| TEST 478) IntV#. | ## ExtV#.## | MANUAL MODE |

Select the test number using the [DEC/NO] and [INC/YES] switches.

Press the [ENTER] switch to execute the currently selected test.

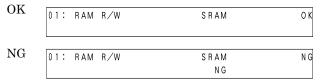
After the test, press the [EXIT] switch to set to standby mode. When the [EXIT] switch is pressed again, "T28 EXIT" will be executed.

### C. TEST SELECTION WHEN AN ERROR HAS BEEN DETECTED

When the test result has been judged as "NG" in each of the following tests, choose whether to execute the same test or to proceed to the next test.

### AUTO MODE:

Press the [EXIT] switch to set to the error processing state. MANUAL MODE:


Press the [EXIT] switch to set to the next test number. This procedure, however, is not applicable to the "T5 PANEL SWITCH" test.

#### T1. RAM READ/WRITE



This test is used to check the write/read/verify functions of the main CPU SRAM.

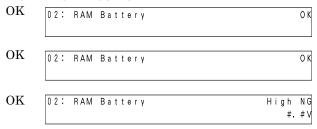
#### **DISPLAY OF RESULTS**



#### **TEST END**

The test ends after the result is displayed.

#### **OTHER**


All RAM data are stored in the memory.

### T2. RAM BATTERY

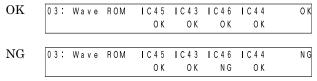


This test checks if the RAM backup battery voltage is within the range of 2.7 V to 3.5 V.

#### **DISPLAY OF RESULTS**



#### **TEST END**


The test ends after the result is displayed.

#### T3. WAVE ROM

```
03: Wave ROM
```

This test compares each wave ROM data.

#### **DISPLAY OF RESULTS**



If any IC is NG, the test result will be NG.

#### **TEST END**

The test ends after the result is displayed.

#### T4. LCD

```
04: LCD Blink
```

This test is used to check that all dots on the LCD blink on and off alternately at approximately 1 second intervals and that the back light of the LCD lights up.

#### **TEST END**

### AUTO MODE:

Press the [+1] switch to end the test and proceed to the next test.

#### MANUAL MODE:

Press the [EXIT] switch to end the test, the initial display will appear and the next test number will be set.

#### T5. PANEL SWITCH/LED

```
05: Panel Switch/LED
```

This test checks that all switches function properly when the panel switches are turned on and off according to the instructions displayed. If the switch is connected to the LED, it also checks that the corresponding LED lights up.

```
05: Panel Switch/LED
Push [xxxxxxxx]
```

### XXXXXXXX SWITCH NAME

If the test result is satisfactory, the sine wave is output while the switch is on and the test will proceed to checking the next switch.

If the wrong switch is pressed, "NG" will appear and no sine wave will be output.

If the correct switch is pressed after that, testing will proceed to the next switch.

If the test results for all switches are satisfactory, "OK" will appear.

The switches are checked in the following order.

[VOICE]>[PERFORM]>[STORE]>[UTILITY]>[CARD]> [SEQ]>[EDIT]>[JOB]>[PLAY/STP]>[SHIFT]>[EF.BYPS]> [MASTER]>[EXIT].[ENTER]>[DEC/NO]>[INC/YES]> [PRE1]>[PRE2]>[INT]>[EXT]>[PLG1]>[PLG2]>[QACCESS]> [A]>[B]>[C]>[D]>[E]>[F]>[G]>[H]>[1]>[2]>[3]>[4]>[5]> [6]>[7]>[8]>[9]>[10]>[11]>[12]>[13]>[14]>[15]>[16]

#### **DISPLAY OF RESULTS**



#### **TEST END**

If the test results of all switches are satisfactory, "OK" will appear and testing will end.

#### T6. ENCODER



While turning the JOG first clockwise and then counterclockwise (-32), according to the LCD instruction as shown below, check that the number increases and decreases sequentially and that "OK" appears as the result.



y y y y: target value ("OK" appears after checking.)
x x x x: current value

#### **DISPLAY OF RESULTS**



NG (No change in the message on the display)

#### **TEST END**

The test ends after the result is displayed.

When the test result is "NG", refer to "C. TEST SELECTION WHEN AN ERROR HAS BEEN DETECTED".

#### T7. KEYBOARD

07: Keyboard

This test is used to check that the keyboard functions properly by scaling 88 keys from A1 to C7.

07: Keyboard Push C 1 Velocity = x x x x

(The above shows the C1 check.)

x x x x: velocity value of the key being pressed

When the key on the LCD display works at a velocity of 0X10 to 0X6F, it is considered normal and that keys note is output. The test will then proceed to the next key test. If a wrong key is played, "NG" will appear and that note's sound will not be output. If a correct key is played after that, however, the test will proceed to the next key test. If the test results of all the keys are satisfactory, "OK" will appear on the LCD display.

#### DISPLAY OF RESULTS

| OK | 07: Keyboard |                        | 0 K     |
|----|--------------|------------------------|---------|
|    | Push C 1     | Velocity               | = x x x |
|    |              |                        |         |
| NG | 07: Keyboard |                        | N G     |
|    | Push C 1     | V e <b>l</b> o c i t y | = x x x |

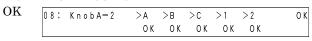
#### **TEST END**

If the test results of all the keys are satisfactory, "OK" will appear and testing will end.

When the test result is "NG", refer to "C. TEST SELECTION WHEN AN ERROR HAS BEEN DETECTED".

### T8. A. KNOB A-2




Move each knob gradually in the following order: Center 64 (63-65); Left 127 (126-127); Right 0 (0-1); Center 64 (63-65), according to the instruction on the LCD as shown below. Check that the numbers change sequentially and that "OK" appears as the result.

Begin the check from the specified knob. The mark [>] will appear to the left of the value of the knob being checked.

| 08: | K n o b A — 2 | > A     | >B  | > C     | >1  | > 2 | ууу |
|-----|---------------|---------|-----|---------|-----|-----|-----|
|     |               | > y y y | ууу | > y y y | ууу | ууу |     |

x x x: current knob value y y y: next target value

#### **DISPLAY OF RESULTS**



NG (No change in the message on the display)

#### **TEST END**

The test ends after the results have been displayed. When the test result is "NG", refer to "C. TEST SELECTION WHEN AN ERROR HAS BEEN DETECTED".

#### **T9. SLIDER 1-4**

09: Slider1-4


Move each slider in the following order: Down 0 (0-1); Up 127 (126-127); Down 0 (0-1), according to the instruction on the LCD. Check that the numbers change sequentially and that "OK" appears as the result.

Begin the check from the specified slider. The mark [>] will appear to the left of the value of the slider being checked.

| 09: | S I i d e r 1 — 4 | C S 1        | CS2 CS3       | C S 4 | ууу |
|-----|-------------------|--------------|---------------|-------|-----|
|     |                   | $x \times x$ | x x x > x x x | x x x |     |

x x x: current slider value y y y: next target value

#### **DISPLAY OF RESULTS**



NG (No change in the message on the display)

# The test ends after the result is displayed.

When the test result is "NG", refer to "C. TEST SELECTION WHEN AN ERROR HAS BEEN DETECTED".

#### T12. CONTROLLER

12: Controller

x x x: current knob value

Move the PITCH BENDER, MODULATION WHEEL, RIBBON and AFTER TOUCH controllers according to the instructions on the LCD as described below. Check that the numbers change sequentially and that "OK" appears as the result.

PITCH BENDER: move this controller in the following

order: Center (63-65); Up (126-127); Down (0-1); Center (63-65).

RIBBON: move this controller in the following

order: Left (6-11); Right (103-108); Left(6-11); and then release it at

(122-127).

MODULATION WHEEL: move this controller in the

following order: Right (0-1); Up (126-127); Down (0-1).

AFTER TOUCH: operate this controller in the following

order: Release (0-5); Push (104-109);

and Release (0-5).

12: Controller PB MW> RB AT yyy

 $\boldsymbol{x}\,\boldsymbol{x}\,\boldsymbol{x}$ : current controller value

yy: next target value

# **DISPLAY OF RESULTS**

OK 12: Controller PB MW> RB AT

NG (No change in the message on the display)

#### **TEST END**

The test ends after the result is displayed.

When the test result is "NG", refer to "C. TEST SELECTION WHEN AN ERROR HAS BEEN DETECTED".

### T13. FOOT CONT, SW

13: Foot Cont, SW

Operate the FOOT VOLUME, FOOT CONTROLLER, SUSTAIN SWITCH and FOOT SWITCH according to the instruction on the LCD as described below. Check that the numbers change and that "OK" appears as the result.

Release 0 (0-2); Push In 127 (125-127); and Release 0 (0-2). Turn On (0) and Off (1) the SUSTAIN SWITCH and FOOT SWITCH.

FOOT VOLUME: Release (0-2); Push In (125-127); Release (0-2)

FOOT CONTROLLER: same as the above SUSTAIN SWITCH: On (0); Off (1)

FOOT SWITCH: same as the above

| 1 3 : | Foot | Cont, S | SW | FV  | FC  | SUS | FS | 0 |
|-------|------|---------|----|-----|-----|-----|----|---|
|       |      |         |    | ххх | ххх | Х   | Х  |   |

x x x: current controller value y y y: next target value

#### **DISPLAY OF RESULTS**

| ok | 1 3 : | Foot | Cont, | SW | F۷ | F C | SUS | FS | ОК |
|----|-------|------|-------|----|----|-----|-----|----|----|
|    |       |      |       |    |    |     | 0 K |    |    |

NG (No change in the message on the display)

#### **TEST END**

0 K

The test ends after the result is displayed. When the test result is "NG", refer to "C. TEST SELECTION WHEN AN ERROR HAS BEEN DETECTED".

#### **T14. BREATH CONTROLLER**

14: Breath Controller

x x x: current value of the breath controller

Operate the breath controller in the following order: Not blowing (122-127) - Blowing (0-5) - Not blowing (122-127) - Not blowing - Blowing - Not blowing, remove the jack when "EXTRACT PLUG!" appears on the LCD. At this time, check that the plug is not plugged in, the numbers change sequentially and that "OK" appears on the LCD. (The test is "OK" when the value is 34 or less.)

14: Breath Controller yyy xxx

XXX: current controller value YYY: next target value

#### **DISPLAY OF RESULTS**



NG (No change in the message on the display)

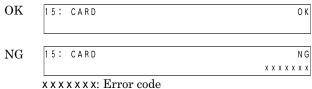
#### **TEST END**

The test ends after the result is displayed.

When the test result is "NG", refer to "C. TEST SELECTION WHEN AN ERROR HAS BEEN DETECTED".

#### T15. CARD




Load SMART MEDIA, with its protect function turned off, and then execute the test.

If SMART MEDIA is loaded with its protect function turned on the WRPRT error message will appear.

Perform the FORMAT/WRITE/READ/VERIFY check on SMART MEDIA and check that "OK" appears as the result.

Unload SMART MEDIA and check that "NO-CARD" appears on the LCD.

#### **DISPLAY OF RESULTS**



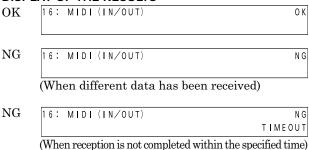
### ERROR CODE

RD/WR: read/write error NO-CARD: no card loaded WRPRT: write protect

## **TEST END**

The test ends after the result is displayed.

When the test result is "NG", refer to "C. TEST SELECTION WHEN AN ERROR HAS BEEN DETECTED".


### T16. MIDI IN/OUT/THRU



Connect a MIDI cable to MID IN and OUT, and then begin testing.

If the IN and OUT check results are "OK", connect the MIDI monitor with THRU and check that the test pattern (AA•FF•00•55) is output.

#### **DISPLAY OF THE RESULTS**



#### **TEST END**

The test ends after the result is displayed.

When the test result is "NG", refer to "C. TEST SELECTION WHEN AN ERROR HAS BEEN DETECTED".

#### T17. HOST SELECT



Move the HOST SELECT switch according to the instructions on the LCD, and check that "OK" appears as the result.

```
17: Host Select
Select [MIDI]
```

When the switch activates properly, a sine wave will be output

If the switch is initially at the MIDI position, move it to any other position and then return it to the MIDI position.

### **DISPLAY OF RESULTS**



NG (No change in the message on the display)

#### **TEST END**

When the test results of all switches are satisfactory, "OK" will appear on the LCD and the testing will end. When the test result is "NG", refer to "C. TEST SELECTION WHEN AN ERROR HAS BEEN DETECTED".

#### T18. TO HOST

18: To Host

Connect pin No.3 to pin No.5, and connect pin No.6 to No.8, and then execute testing.

Operate the HOST SELECT switch according to the instruction on the LCD and check that "OK" appears when [MIDI] is reached at the end.

When the HOST SELECT switch is set to the MIDI position, the "SET HOST Sw [MAC]" message will appear. Next set the HOST SELECT switch of the main unit to MAC to begin testing.

#### **DISPLAY OF RESULTS**



#### TEST END

The test ends after the result is displayed.

When the test result is "NG", refer to "C. TEST SELECTION WHEN AN ERROR HAS BEEN DETECTED".

### T19. 1kHz OUTPUT-L

19: PCM SIN 1kHz L

Insert plugs into OUTPUT-L, OUTPUT-R, INDIV-1, INDIV-2, PHONES (L), and PHONES (R), and then connect the frequency counter, oscilloscope and AC voltmeter (with a JIS-C filter).

Set the master volume to Max and check that the following signals are output from OUTPUT-L, INDIV-1 and 2, and PHONES (L).

OUTPUT-L: 1 kHz ±1.5 Hz, sine wave, +6.0 ±2 dBm

(10k ohm load)

OUTPUT-R: -72 dBm or less (10 kohm load)

INDIV-1: 1 kHz  $\pm 1.5$  Hz, sine wave,  $\pm 6.0 \pm 2$  dBm (10)

kohm load)

INDIV-2: -72 dBm or less (10 kohm load)

PHONES (L): 1 kHz, sine wave,  $+5.0 \pm 2$  dBm (33 ohm load)

PHONES (R):-64 dBm or less (33 ohm load)

While sound is being output, the following message appears on the LCD.

19: PCM SIN 1kHz L ON

#### **DISPLAY OF RESULTS**

#### **TEST END**

AUTO: when the [INC] switch is pressed, the

sound output will stop and the next test

will be executed.

MANUAL: when the [EXIT] switch is pressed, testing

will end, the initial display will be restored and the next test number will be set.

#### T20. 1kHz OUTPUT-R

20: PCM SIN 1kHz R

Insert plugs into OUTPUT-L, OUTPUT-R, PHONES (L), and PHONES (R), and then connect the oscilloscope and AC voltmeter (with a JIS-C filter).

Set the master volume to the Max position.

Check that signals are output at OUTPUT-L, OUTPUT-R, PHONES (L), and PHONES (R) as described below. At this time, signals are output at MEL for mLAN as well.

OUTPUT-L: -72 dBm or less (10k ohm load)

OUTPUT-R: 1 KHZ ±1.5 Hz, sine wave, +6.0 ±2 dBm

(10k ohm load)

INDIV-1: -72 dBm or less (10k ohm load)

INDIV-2: 1 kHz±1.5 Hz, sine wave, +6.0±2 dBm (10k ohm load)

PHONES (L): -64 dBm or less (33 ohm load)

PHONES (R):  $1\,\mathrm{kHz}$ , sine wave,  $+5.0\pm2\,\mathrm{dBm}$  (33 ohm load) While sound is output, the following message appears on the LCD.

20: PCM SIN 1kHz R ON

## **DISPLAY OF RESULTS**

#### **TEST END**

AUTO: when the [INC] switch is pressed, the sound output will stop and the next test will be executed.

MANUAL: when the [EXIT] switch is pressed, testing will end, the initial display will be restored and the next test number will be set.

### T21. A-D LEVEL, JACK

21: A/D Level

Set the A/D GAIN volume to the maximum level. Input a 1 kHz sine wave of the following level through the A/D input port according to the instructions on the LCD. MIC: -40 dBm ±0 dBm LINE: -6 dBm ±0 dBm

When a plug is connected to the jack, both "EXTRACT PLUG" appears and the A/D level appear.

When a plug is not connected and the level is 2 or lower, "INSERT PLUG" appears and when a plug is inserted, the A/D level will be indicated.

"OK" will appear when the AD level is within the following range.

MIC: 75 or greater and 85 or less LINE: 75 or greater and 85 or less

When MIC is OK, the LINE check will be executed automatically.



#### **DISPLAY OF RESULTS**



#### **TEST END**

When the [EXIT] switch is pressed, the sound output will stop and the next test number will be set.

For the procedure to take when the test result is "NG", refer to "C. TEST SELECTION WHEN AN ERROR HAS BEEN DETECTED".

#### T22. A/D -> D/A

This test is used to check the signal passage from the A/ D input to the D/A output.

(GAIN is set to LINE 1 in the initial settings.)

Input a 1 kHz ±5 Hz, -6.0 dBm ±0 dBm sine wave signal to each signal passage through the A/D input in the order described below. Check that the output level specified below is obtained at the output L and R respectively.

Set the A/D INPUT VOLUME knob to the Max position.

| A/D -> | D/A | Gain  |  |
|--------|-----|-------|--|
|        |     | LINE1 |  |

LINE 1, LINE 2, MIC 1 and MIC 2 can be selected by using [DEC] and [INC].

With LINE 1, GAIN = LINE applies and the signal input through the A/D will be output at the D/A as is.

With LINE 2, GAIN = LINE applies and the level of the signal input through the A/D will be lowered to the specification of the main unit (-12dB) and then output at the D/A.

With MIC 1, GAIN = MIC applies and the signal input through the A/D will be output at the D/A as is.

With MIC 2, GAIN = MIC applies and the level of the signal input through the A/D will be lowered to the specification of the main unit (-12dB) and then output at the D/A.

When GAIN = Line 1, move the A/D INPUT VOLUME knob and check that the sound volume varies.

OUTPUT-L: 1 kHz ±5 Hz, sine wave, +15.0 ±2 dBm (10k ohm load) (Distortion: 1.00% or less)

OUTPUT-R: 1 kHz ±5 Hz, sine wave, +15.0 ±2 dBm (10k ohm load) (Distortion: 1.00% or less)

### **TEST END**

When the [EXIT] switch is pressed, the sound output will stop and the next test number will be set.

T23. PLUG-IN1 T24. PLUG-IN2

23: Plug-In1

Connect the HARMONY PLUG-ON boarding into the PLUG-IN 1 slot.

After checking the connection of the PLG-IN 1 slot, the signal transmission and reception of the CONTROL LINE, and the IN/OUT of the MIDI LINE and MEL LINE, check to ensure that the output level specified below is obtained at output L and R respectively.

Set the MASTER VOLUME knob to the Max position.

OUTPUT-L: 1 kHz ±5 Hz, sine wave, +11.5 ±2 dBm (10k ohm load) (Distortion: 1.50% or less)

OUTPUT-R: 1 kHz ±5 Hz, sine wave, +11.5 ±2 dBm (10k ohm load) (Distortion: 1.50% or less)

## **DISPLAY OF RESULTS**

(No change in the message on display) OK

NG 23: Plug-In1 NG NO BOARD xxxxxxx: Error code

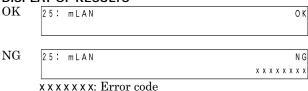
Error code

NG-BOARD: a board other than the VH board is loaded.

NO-BOARD: board is not loaded. CONTROL: CONTROL line failure

### **TEST END**

When the [EXIT] switch is pressed, the sound output will stop and the next test number will be set.


#### T25. mLAN



Connect the mLAN board to the mLAN slot and execute testing.

After checking the connection of the mLAN board, the signal transmission and reception of the MIDI line, the RESET request signal, and the operation of OUT + SWP30 of the MEL line by the external clock, check that "OK" appears. Also, confirm that a 900 Hz sine wave output is obtained as the final signal at OUTPUT L and R.

#### **DISPLAY OF RESULTS**



Error code

NO-BOARD: board is not loaded.

RESET: errror in the reset request signal check

MIDI: MIDI line failure
MEL: MEL OUT line failure

#### **TEST END**

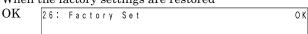
When the [EXIT] switch is pressed, the sound output will stop and the next test number will be set.

#### T26. FACTORY SET

```
26: Factory Set
```

This test is used to restore the factory settings.

When the test is executed, the following message will appear on the LCD.


```
26: Factory Set [NO] or [YES] ?
```

Pressing [YES] will restore the factory settings. Pressing [NO] will not restore the factory settings.

When the test ends properly, the sine wave sound is output momentarily.

#### **DISPLAY OF RESULTS**

When the factory settings are restored



When the factory settings are not restored



#### **TEST END**

The test ends after the result is displayed.

### FACTORY SETTING DATA

After the factory settings are restored, the following data will be set.

#### T27. SWP Ch



From OUTPUT-L, the sound output is repeated until the EXIT switch is pressed via the SWP64Ch on the Master side to the L channel and via the SWP64Ch on the Slave side to the R channel.

Connect the plugs to OUTPUT-L and R. Observe the output waveform using the oscilloscope to check that the level of all channels is within the below specified range.

Set the master volume to the Max position.

OUTPUT-L:  $1 \text{ kHz} \pm 1.5 \text{ Hz}$ , sine wave OUTPUT-R:  $2 \text{ kHz} \pm 1.5 \text{ Hz}$ , sine wave

Also, the following message appears on the LCD during sound output.

| 27: | SWP | Сh | Mode | Chxxx |
|-----|-----|----|------|-------|
|     |     |    | 6 4  |       |

x x x: Sound outputting channel no. Either 64 or 128 can be selected for the mode.

#### **TEST END**

AUTO: when the [EXIT] switch is pressed,the sound output will stop.

MANUAL: when the [EXIT] switch is pressed, the sound output will stop and the mode select standby state will be set. When the EXIT switch is pressed twice more, testing will end.

#### T28. EXIT

```
28: Exit
```

When testing is executed, the following message will appear on the LCD.

```
28: Exit [NO] or [YES] ?
```

When [YES] is pressed, testing will end.

When [NO] is pressed, the entry screen for the AUTO and MANUAL modes will be restored.

#### D. OTHERS

When the test mode is cancelled, the same sequence that occurred when turning on the power will be executed. Check that the on/off clicking noises of the main unit power switch is as described below.

OUTPUT-L, R: Less than 500 mV INDIV-1, 2: Less than 500 mV PHONES-L, R: Less than 500 mV

Also, with testing cancelled check the noise level when the voice play mode is set according to the factory settings and no note has been played to confirm that it satisfies the following conditions.

Take measurements with the voltmeter (with JIS-C filter) connected.

OUTPUT-L: Less than -82 dBm (10k ohm load)
OUTPUT-R: Less than -82 dBm (10k ohm load)
INDIV-1: Less than -82 dBm (10k ohm load)
INDIV-2: Less than -82 dBm (10k ohm load)
PHONES-L: Less than -82 dBm (33k ohm load)
PHONES-R: Less than -82 dBm (33k ohm load)

### E. Short-cut Functions

(1) Turn on the power while pressing [PRE1] and [PRE2], and forced initialization will be executed.



(2) Turn on the power while pressing [INT] and [EXT], the version will then appear and the operating power will be restored about 5 seconds later.

```
>>>> VERSION = Int:#.## , ExtV#.## <<<<
```

(3) Turn on the power while pressing [EXIT] and [ENTER], and the system program will be loaded from SMART MEDIA and the operating power will be restored.

```
PROGRAM LOAD)
<< Executing >>
```

(4) Turn on the power while pressing [DEC] and [INC], and the wave data will be loaded from SMART MEDIA, and the operating power will be restored.

# MIDI DATA FORMAT

Many MIDI messages listed in the MIDI Data Format section are expressed in hexadecimal or binary numbers. Hexadecimal numbers may include the letter "H" as a suffix. The letter "n' indicates a certain whole number.

The chart below lists the corresponding decimal number for each hexadecimal/binary number.

| ecimal | Hexadecimal | Binary    |  |  |
|--------|-------------|-----------|--|--|
| 0      | 00          | 0000 0000 |  |  |
| 1      | 01          | 0000 0001 |  |  |
| 2      | 02          | 0000 0010 |  |  |
| 3      | 03          | 0000 0011 |  |  |
| 4      | 04          |           |  |  |
| 5      | 05          | 0000 0100 |  |  |
|        |             |           |  |  |
| 6      | 06          | 0000 0110 |  |  |
| 7      | 07          | 0000 0111 |  |  |
| 8      | 08          | 0000 1000 |  |  |
| 9      | 09          | 0000 1001 |  |  |
| 10     | 0A          | 0000 1010 |  |  |
| 11     | 0B          | 0000 1011 |  |  |
| 12     | 0C          | 0000 1100 |  |  |
| 13     | 0D          | 0000 1101 |  |  |
| 14     | 0E          | 0000 1110 |  |  |
| 15     | OF          | 0000 1111 |  |  |
| 16     | 10          | 0001 0000 |  |  |
| 17     | 11          | 0001 0001 |  |  |
| 18     | 12          | 0001 0001 |  |  |
|        |             |           |  |  |
| 20     | 13          | 0001 0011 |  |  |
|        |             |           |  |  |
| 21     | 15          | 0001 0101 |  |  |
| 22     | 16          | 0001 0110 |  |  |
| 23     | 17          | 0001 0111 |  |  |
| 24     | 18          | 0001 1000 |  |  |
| 25     | 19          | 0001 1001 |  |  |
| 26     | 1A          | 0001 1010 |  |  |
| 27     | 1B          | 0001 1011 |  |  |
| 28     | 1C          | 0001 1100 |  |  |
| 29     | 1D          | 0001 1101 |  |  |
| 30     | 1E          | 0001 1110 |  |  |
| 31     | 1F          | 0001 1111 |  |  |
|        | 20          |           |  |  |
| 32     |             |           |  |  |
| 33     | 21          | 0010 0001 |  |  |
| 34     | 22          | 0010 0010 |  |  |
| 35     | 23          | 0010 0011 |  |  |
| 36     | 24          | 0010 0100 |  |  |
| 37     | 25          | 0010 0101 |  |  |
| 38     | 26          | 0010 0110 |  |  |
| 39     | 27          | 0010 0111 |  |  |
| 40     | 28          | 0010 1000 |  |  |
| 41     | 29          | 0010 1001 |  |  |
| 42     | 2A          | 0010 1010 |  |  |
| 43     | 2B          | 0010 1011 |  |  |
| 44     | 2C          | 0010 1100 |  |  |
| 45     | 2D          | 0010 1100 |  |  |
| 46     | 2E          | 0010 1101 |  |  |
| 47     |             |           |  |  |
|        | 2F          | 0010 1111 |  |  |
| 48     | 30          | 0011 0000 |  |  |
| 49     | 31          | 0011 0001 |  |  |
| 50     | 32          | 0011 0010 |  |  |
| 51     | 33          | 0011 0011 |  |  |
| 52     | 34          | 0011 0100 |  |  |
| 53     | 35          | 0011 0101 |  |  |
| 54     | 36          | 0011 0110 |  |  |
| 55     | 37          | 0011 0111 |  |  |
| 56     | 38          | 0011 1000 |  |  |
| 57     | 39          | 0011 1001 |  |  |
| 58     | 3A          | 0011 1001 |  |  |
| 59     |             |           |  |  |
|        | 3B          | 0011 1011 |  |  |
| 60     | 3C          | 0011 1100 |  |  |
| 61     | 3D          | 0011 1101 |  |  |
| 62     | 3E          | 0011 1110 |  |  |
| 63     | 3F          | 0011 1111 |  |  |

| Decimal | Hexadecimal | Binary                 |  |  |
|---------|-------------|------------------------|--|--|
| 64      | 40          | 0100 0000              |  |  |
| 65      | 41          | 0100 0001              |  |  |
| 66      | 42          | 0100 0010              |  |  |
| 67      | 43          | 0100 0011              |  |  |
| 68      | 4 4         | 0100 0100              |  |  |
| 69      | 45          | 0100 0101              |  |  |
| 70      | 46          | 0100 0110              |  |  |
| 71      | 47          | 0100 0111              |  |  |
| 72      | 48          | 0100 1000              |  |  |
| 73      | 49          | 0100 1001              |  |  |
| 74      | 4 A         | 0100 1010              |  |  |
| 75      | 4B          | 0100 1011              |  |  |
| 76      | 4C          | 0100 1100              |  |  |
| 77      | 4D          | 0100 1101              |  |  |
| 78      | 4 E         | 0100 1110              |  |  |
| 79      | 4F          | 0100 1111              |  |  |
| 80      | 50          | 0101 0000              |  |  |
| 81      | 51          | 0101 0001              |  |  |
| 82      | 52          | 0101 0001              |  |  |
| 83      |             |                        |  |  |
|         | 5 3<br>5 4  | 0101 0011<br>0101 0100 |  |  |
| 84      |             |                        |  |  |
| 85      | 55          | 0101 0101              |  |  |
| 86      | 56          | 0101 0110              |  |  |
| 87      | 57          | 0101 0111              |  |  |
| 8 8     | 58          | 0101 1000              |  |  |
| 89      | 59          | 0101 1001              |  |  |
| 90      | 5A          | 0101 1010              |  |  |
| 91      | 5B          | 0101 1011              |  |  |
| 92      | 5C          | 0101 1100              |  |  |
| 93      | 5D          | 0101 1101              |  |  |
| 94      | 5 E         | 0101 1110              |  |  |
| 95      | 5F          | 0101 1111              |  |  |
| 96      | 60          | 0110 0000              |  |  |
| 97      | 61          | 0110 0001              |  |  |
| 98      | 62          | 0110 0010              |  |  |
| 99      | 63          | 0110 0011              |  |  |
| .00     | 64          | 0110 0100              |  |  |
| .01     | 65          | 0110 0101              |  |  |
| .02     | 66          | 0110 0110              |  |  |
|         | 67          |                        |  |  |
| .03     | 68          | 0110 0111<br>0110 1000 |  |  |
| .05     | 69          | 0110 1000              |  |  |
|         |             |                        |  |  |
| 106     | 6A          | 0110 1010              |  |  |
| .07     | 6B          | 0110 1011              |  |  |
| .08     | 6C          | 0110 1100              |  |  |
| .09     | 6D          | 0110 1101              |  |  |
| 110     | 6 E         | 0110 1110              |  |  |
| 111     | 6F          | 0110 1111              |  |  |
| .12     | 70          | 0111 0000              |  |  |
| 113     | 71          | 0111 0001              |  |  |
| .14     | 72          | 0111 0010              |  |  |
| .15     | 73          | 0111 0011              |  |  |
| 16      | 74          | 0111 0100              |  |  |
| .17     | 75          | 0111 0101              |  |  |
| .18     | 76          | 0111 0110              |  |  |
| .19     | 77          | 0111 0111              |  |  |
| 20      | 78          | 0111 1000              |  |  |
| 121     | 79          | 0111 1000              |  |  |
|         |             |                        |  |  |
| -       | 7A          | 0111 1010              |  |  |
| 23      | 7B          | 0111 1011              |  |  |
| 124     | 7C          | 0111 1100              |  |  |
| 125     | 7D          | 0111 1101              |  |  |
| 26      | 7 E         | 0111 1110              |  |  |
| 27      | 7F          | 0111 1111              |  |  |

#### Additional Notes

For example, 144 - 159(Decimal)/9nH/1001 0000 - 1001 1111(Binary) indicate the note-on messages for the channels 1 through 16 respectively. 176 - 191/BnH/1011 0000 - 1011 1111 indicate the control change messages for the channels 1 through 16 respectively. 192 - 207/CnH/1100 0000 - 1100 1111 indicate the program change messages for the channels 1 through 16 respectively. 240/F0H/1111 0000 is positioned at the beginning of data to indicate a system exclusive message. 247/F7H/1111 0111 is positioned at the end of the system

aaH(Hexadecimal)/0aaaaaa(Binary) indicates the data addresses. The data address consists of High, Mid and Low.

bbH/0bbbbbbb indicates byte counts.

ccH/0cccccc indicates tcheck sums.

ddH/0ddddddd indicates data/value

#### SYNTHESIZER/SEQUENCER PART

#### 1) TRANSMIT FLOW

```
MIDI <-[SW1]-+--- NOTE ON/OFF
                                     --- CONTROL CHANGE
                                                                                                           BnH,01H
BnH,05H
BnH,0AH
BnH,40H
BnH,41H
                                                    MODULATION
PORTAMENTO TIME
                                                                                                                                                                         (CS6x only)
(CS6x only)
                                                     SUSTAIN SWITCH
                                                                                                                                                                         (CS6x only)
                                                     PORTAMENTO SWITCH
FILTER RESONANCE
                                                                                                            BnH, 47H
                                                   FILTER RESONANCE BHH, 47H
EG RELEASE TIME BHH, 48H
EG ATTACK TIME BHH, 49H
FILTER CUTOFF FREQ BHH, 49H
EG DECAY TIME BHH, 49H
REVERB SEND BHH, 5BH
CHORUS SEND BHH, 5BH
ASSIGNABLE CONTROLLER BHH, (00H .. 5FH)
FOOT VOLUME
                                      -[SW8]--BANK SEL MSB
BANK SEL LSB
                                      -[SW2]--EG SUSTAIN LEVEL BoH. 1FH
                                                                                                                                                                         (CS6x only)
                                         -- PROGRAM CHANGE
                                                                                                           CnH
                                       --- CHANNEL AFTER TOUCH
                                                                                                         DnH
                                    +--- PITCH BEND CHANGE
                     -[SW4]---- SYSTEM REALTIME MESSAGE
START
CONTINUE
STOP
                   +[SW5]-+--- SYSTEM EXCLUSIVE MESSAGE
                                     -[SW6]-SAMPLE DUMP STANDARD
                                                                                                          FOH 7EH nnH 03H SSH SSH F7H
FOH 7EH nnH 7FH ppH F7H
FOH 7EH nnH 7EH ppH F7H
FOH 7EH nnH 7DH ppH F7H
FOH 7EH nnH 7CH ppH F7H
                                                      DUMP REQUEST
ACK
NAK
                                    -[SW7]-<PARAMETER CHANGE>
                                                                                                       FOH 43H 1nH 64H ahH amH alH ddH.....ddH F7H
                      SYSTEM EXCLUSIVE MESSAGE
IDENTITY REPLY
FOH 7EH 7FH 06H 02H 43H 00H 41H 2DH 02H 00H 00H 00H 01H F7H
                  ----- ACTIVE SENSING
                                                                                                         FEH
[SW1] MIDI Transmit Channel
Master Keyboard Mode = on: complies with Zome Transmit Channel.
Master Keyboard Mode = off: complies with Keyboard Transmit Channel.
The data played back using Sequencer Part will be output through the channels set for the sequence data, ignoring [SW1] settings.

CSGR transmits BC and A-C/1-2 of ASSIGNABLE CONTROLLER, and the data from the Sequencer Part. [SW2] MIDI Control Mode
[SW3] MIDI Sync
[SW4] MIDI Control
[SW4] MIDI Control
[SW4] MIDI Device Number
When set to all, data will be output through the channel 1.
[SW6] PHRASE CLIP MODE JOB only. Not available on S80.
[SW7] In the VOICE MODE, VOICE related data only. In the PERFORMANCE MODE, PERFORMANCE related data only.
SYSTEM data will be transmitted/received in all modes.
```

[SW1] MIDI Transmit Channel

#### 2) RECEIVE FLOW

```
MIDI >-[SW11]+--- NOTE OFF
                    --- NOTE ON/OFF
                     --- CONTROL CHANGE
MODULATION
PORTAMENTO TIME
                                                             BnH.01H
                                                             BnH.05H
                            DATA ENTRY MSB
DATA ENTRY LSB
MAIN VOLUME
                                                             BnH,06
BnH,26H
                                                             BnH, OAH
                                                            BnH,0BH
BnH,40H
BnH,41H
                             EXPRESSION
                             PORTAMENTO SWITCH
                            PORTAMENTO SWITCH
SOSTENUTO
HARMONIC CONTENT
EG RELEASE TIME
EG ATTACK TIME
BRIGHTNESS
EG DECAY TIME
PORTAMENTO CONTROL
EFFECT1 DEPTH
EFFECT3 DEPTH
DATE BRITTEN TAND
                                                            BnH,41H
BnH,42H
BnH,47H
BnH,48H
BnH,49H
BnH,44H
BnH,54H
BnH,54H
BnH,5DH
BnH,60H
BnH,61H
                             ASSIGNABLE CONTROLLER BnH. (00H .. 5FH)
                            RPN
                                   COARSE TUNING
RPN RESET
ALL SOUND OFF
RESET ALL CONTROLLERS
ALL NOTE OFF
OMNI MODE OFF
ONNI MODE OF
POLY MODE
                                                            BRH, 64H,75H,65H,70H
BRH,78H
BRH,79H
BRH,7BH
BRH,7CH
BRH,7DH
BRH,7DH
BRH,7DH
BRH,7TH
BRH,7TH
                    -[SW2]--EG SUSTAIN LEVEL BnH.1FH
                   +-[SW8]--BANK SEL MSB
BANK SEL LSB
                                                            BnH,00H
                                                            BnH, 20H
                                                           CnH
                    -[SW9]--PROGRAM CHANGE
                          ----CHANNEL AFTER TOUCH DnH
                      SYSTEM EXCLUSIVE MESSAGE

IDENTITY REQUEST FOH 7EH OnH 06H 01H F7H
REMOTE SWITCH F0H 43H 10H 64H 00H 00H alH ddH F7H
                   +-[SW12]- GM MODE ON
                                                           FOH 7EH 7FH 09H 01H F7H
                        SYSTEM EXCLUSIVE MESSAGE
         +[SW5]-+
                                                            FOH 7FH 7FH 04H 01H 11H mmH F7H
                         MIDI MASTER VOLUME
                    -[SW6]--SAMPLE DUMP STANDARD
                                                           FOH 7EH nnH 01H ssH ssH ddH...ddH F7H
F0H 7EH nnH 02H kkH ddH...ddH ccH F7H
F0H 7EH nnH 7DH ppH F7H
                             DUMP HEADER
DATA PACKET
                                                            FOH 43H OnH 64H bhH blH ahH amH alH ddH....ddH ccH F7H
                    -[SW7]--<PARAMETER CHANGE> FOH 43H lnH 64H ahH amH alH ddH.....ddH F7H
                    -[SW7]--<BULK DUMP REQUEST> FOH 43H 2nH 64H ahH amH alH ddH....ddH F7H
                    -[SW7]--<PARAMETER REQUEST> FOH 43H 3nH 64H ahH amH alH F7H
                   +-[SW12]-XG SYSTEM ON
                                                          FOH 43H 1nH 4CH 00H 00H 7EH 00H F7H
         +[SW3]----- SYSTEM REALTIME MESSAGE
TIMING CLOCK F8H
          [SW4]----- SYSTEM REALTIME MESSAGE
                                START
CONTINUE
STOP
         +----- ACTIVE SENSING
                                                           FEH
```

```
[SW2] MIDI Control Mode
[SW3] MIDI Sync
[SW4] MIDI Control
```

#### 3) TRANSMIT/RECEIVE DATA

#### (3-1) CHANNEL VOICE MESSAGES

CS6R transmits BC and A-C/1-2 of ASSIGNABLE CONTROLLER, and the data from the

### (3-1-1) NOTE OFF

| NOTE OFF                  |               |                             |
|---------------------------|---------------|-----------------------------|
| STATUS                    | 1000nnnn(8nH) | n = 0 ~ 15 CHANNEL NUMBER   |
| NOTE NUMBER               | 0kkkkkkk      | $k = 0 (C-2) \sim 127 (G8)$ |
| VELOCITY<br>Receive only. | 0vvvvvv       | ignores "v"                 |

#### (3-1-2) NOTE ON/OFF

1001nnnn(9nH)
0kkkkkk
0vvvvvvv(v≠0)
0vvvvvvv(v=0) STATUS NOTE NUMBER VELOCITY

(3-1-3) CONTROL CHANGE STATUS 1011nnnn (BnH) n = 0 ~ 15 CHANNET, NUMBER

CONTROL NUMBER Occcccc
CONTROL VALUE OVVVVVV

| *  | TRANSMITTED  | CONTROL NUMBER          |                                       |      |
|----|--------------|-------------------------|---------------------------------------|------|
| С  | = 0          | BANK SEL MSB            | ; v = 0,63,127                        | *3   |
| С  | = 32         | BANK SEL LSB            | ; v = 0,1,8,9,24,25,32,40,41,64,65    | *3   |
| С  | = 1          | MODULATION              | ; v = 0 - 127                         |      |
| С  | = 5          | PORTAMENTO TIME         | ; v = 0 - 127                         | *4   |
| С  | = 7          | MAIN VOLUME             | v = 0 - 127                           |      |
| С  | = 10         | PAN                     | ; v = 0 - 127                         | *4   |
| С  | = 11         | EXPRESSION              | v = 0 - 127                           |      |
| С  | = 31         | EG SUSTAIN LEVEL        | ; v = 0:-64 - 64:0 - 127:+63 *4       | , *5 |
| С  | = 64         | SUSTAIN SWITCH          | ; v = 0, 127                          |      |
| С  | = 65         | PORTAMENTO SWITCH       | ; v = 0-63:OFF , 64-127:ON            | *4   |
| С  | = 71         | FILTER RESONANCE        | ; v = 0:-64 - 64:0 - 127:+63          | *4   |
| С  | = 72         | EG RELEASE TIME         | ; v = 0:-64 - 64:0 - 127:+63          | *4   |
| С  | = 73         | EG ATTACK TIME          | ; v = 0:-64 - 64:0 - 127:+63          | *4   |
| С  | = 74         | FILTER CUTOFF FREO      | ; v = 0:-64 - 64:0 - 127:+63          | *4   |
| С  | = 75         | EG DECAY TIME           | ; v = 0:-64 - 64:0 - 127:+63          | *4   |
| С  | = 91         | REVERB SEND             | ; v = 0 - 127                         | *4   |
| С  | = 93         | CHORUS SEND             | ; v = 0 - 127                         | *4   |
| c  | = 095        | ASSIGNABLE CONTROLLER   | ; v = 0 - 127                         | *6   |
| Th | he Sequencer | Part will play back all | the recorded control change messages. |      |
|    |              |                         |                                       |      |
| *  | RECEIVED COM | TROL NUMBER             |                                       |      |
|    |              | BANK SEL MSB            | v = 0 - 127                           | *3   |
|    |              |                         |                                       |      |

| * RECEIVED CONTROL NUMBER   |                                    |
|-----------------------------|------------------------------------|
| c = 0 BANK SEL MSB          | ; v = 0 - 127 *3                   |
| c = 32 BANK SEL LSB         | ; v = 0 - 127 *3                   |
| c = 1 MODULATION            | ; v = 0 - 127                      |
| c = 5 PORTAMENTO TIME       | ; v = 0 - 127 *2                   |
| c = 6 DATA ENTRY MSB        | ; v = 0 - 127 *1                   |
| c = 38 DATA ENTRY LSB       | ; v = 0 - 127 *1                   |
| c = 7 MAIN VOLUME           | ; v = 0 - 127                      |
| c = 10 PAN                  | ; v = 0 - 127                      |
| c = 11 EXPRESSION           | ; v = 0 - 127                      |
| c = 31 EG SUSTAIN LEVEL     | ; v = 0:-64 - 64:0 - 127:+63 *2,*5 |
| c = 64 SUSTAIN SWITCH       | ; v = 0-63:OFF , 64-127:ON *2      |
| c = 65 PORTAMENTO SWITCH    | ; v = 0-63:OFF , 64-127:ON *2      |
| c = 66 SOSTENUTO            | ; v = 0-63:OFF , 64-127:ON *2      |
| c = 71 HARMONIC CONTENT     | ; v = 0:-64 - 64:0 - 127:+63       |
| c = 72 EG RELEASE TIME      | ; v = 0:-64 - 64:0 - 127:+63       |
| c = 73 EG ATTACK TIME       | ; v = 0:-64 - 64:0 - 127:+63       |
| c = 74 BRIGHTNESS           | ; v = 0:-64 - 64:0 - 127:+63       |
| c = 75 EG DECAY TIME        | ; v = 0:-64 - 64:0 - 127:+63 *2    |
| c = 84 PORTAMENTO CONTROL   | ; v = 0 - 127 *2                   |
| c = 91 EFFECT1 DEPTH        | ; v = 0 - 127                      |
| c = 93 EFFECT3 DEPTH        | ; v = 0 - 127                      |
| c = 96 DATA ENTRY INC       | ; v = 127 *1                       |
| c = 97 DATA ENTRY DEC       | ; v = 127 *1                       |
| c = 095 ASSIGNABLE CONTROLL |                                    |
| c = 095 ARPEGGIO SW         | ; v = 0-63:OFF , 64-127:ON *6      |
| c = 095 ARPEGGIO HOLD       | ; v = 0-63:OFF , 64-127:ON *6      |

<sup>\*1</sup> Used only when a value is set using RPN. \*2 Invalid with Drum Voices.

| *3 | Relation bet | ween BANK ( | CHANGE at | nd PRO | OGRAM i | s as | follows | :         |                  |
|----|--------------|-------------|-----------|--------|---------|------|---------|-----------|------------------|
|    | CATEGORY     |             |           |        | MSB     | LS   | B F     | ROGRAM No | Displayed on LCD |
|    |              |             |           | +      |         | -+   | +-      |           |                  |
|    | Normal Voic  | e Inte      | rnal      |        | 0       | 0    | 0       | 1127      | (1128)           |
|    | Drum Voice   | Inte        | rnal      |        | 127     | 0    | 0       | )1        | (12)             |
|    | Normal Voic  | e Pres      | et 1      | - 1    | 63      | 0    | 0       | 1127      | (1128)           |
|    |              | Pres        | et 2      |        | 63      | 1    | 0       | 1127      | (1128)           |
|    |              | Inte        | rnal      |        | 63      | 8    | 0       | )127      | (1128)           |
|    |              | Exte        | rnal      |        | 63      | 9    | 0       | )127      | (1128)           |
|    | Plug-in Voi  | ce Plug     | -in l     |        | 63      | 24   | 0       | )63       | (164)            |
|    |              | Plug        | -in 2     |        | 63      | 25   | 0       | )63       | (164)            |
|    | Drum Voice   | Pres        | et        |        | 63      | 32   | 0       | )7        | (18)             |
|    |              | Inte        | rnal      |        | 63      | 40   | 0       | )1        | (12)             |
|    |              | Exte        | rnal      |        | 63      | 41   | 0       | )1        | (12)             |
|    | Performance  | Inte        | rnal      |        | 63      | 64   | 0       | )127      | (1128)           |
|    |              | Exte        | rnal      |        | 63      | 65   | 0       | )63       | (164)            |
|    | Phrase Clip  | Inte        | rnal      |        | 63      | 10   | 4   0   | )3        | (14)             |

\*4 CS6x only.

\*4 CS6x only.

\*5 Transmitted/received only when MODE2 is selected in CONTROL CHANGE MODE.

\*6 The default CONTROLL NUMBERS of ASSIGNABLE CONTROLLER are as follows:
BREATH CONTROLLER 2

FOOT CONTROLLER 4 (Transmit: CS6x and S80 only)

SCENE CONTROL

\*\*1 (Transmit/Receive: CS6x only)

KNOB 1 16

KNOB 2 17

KNOB A 18

KNOB B 19

KNOB C 20

RIBBON CONTROLLER 2 (Transmit: CS6x only)

\*\*Transmit: CS6x only)

\*\*Transmit: CS6x only) 20 (Transmit: CS6x only)
7 (Transmit/Receive: S80 only)
88 (Transmit: CS6x, S80 only)
89 (Transmit: CS6x only)
90 (Transmit: CS6x only) CONTROL SLIDER FOOT SWITCH FOOT SWITCH ARPEGGIO HOLD ARPEGGIO SWITCH

ARPEGGIO SWITCH 90 (Transmit: CSK only)

PORTAMENTO TIME sets the time it takes for the pitch to reach the next note played when PORTAMENTO SWITCH is set to on.

PAN position relatively changes according to the preset value for each voice.

In PORTAMENTO CONTROI, PORTAMENTO TIME is fixed to 0.

EFFECTI DEPTH controls reverb send level.

REFECTI DEPTH controls chorus send level.

HARMONIC CONTENT adjusts the resonance preset for each voice.

Setting a value adds to or subtracts from the center value, 64, since it is an offset parameter.

The larger the value more resonant sound will be produced. The effective range may be narrower than the range you can designate depending on the selected voice.

The parameters, EG ATTACK TIME, EG DECAY TIME, EG SUSTAIN LEVEL, EG RELEASE TIME adjust the envelopes preset for each voice.

Setting these values add to or subtract from the center value, 64, since these are offset parameters.

Setting parameters. and to of subtract from the Center value, or, since these are offset parameters. BRIGHTMSS adjusts the cutoff frequency preset for each voice. Setting a value adds to or subtracts from the center value, 64, since it is an offset

parameter. The smaller the value the cutoff frequency will be lowered. The effective range may be narrower than the range you can designate depending on the selected voice.

<sup>[</sup>SW4] MIDI Control
[SW5] MIDI Device Number
When set to the number other than off, MIDI MASTER VOLUME will be received.
[SW6] FHRASE CLIP MODE JOB only. Not available on S80.
[SW7] In the VOICE MODE, VOICE related data only. In the PERFORMANCE MODE, PERFORMANCE
related data only.
SYSTEM data will be transmitted/received in all modes.
[SW8] SYSTEM Bank Select Switch
[SW9] SYSTEM Program Change Switch (Received only in the Play Mode when Voice Mode or
Phrase Clip Mode is selected.)
[SW10] SYSTEM Bank Receive Channel and Receive Filter.
In Performance Mode, complies with Part Receive Channel and Part Receive Switch.
In the modes other than Performance Mode, complies with Basic Receive Channel.
[SW12] SYSTEM Receive GM/XG On

<sup>\*1</sup> Performance Mode only

nk Select will be actually executed when the Program Change message is received. nk Select and Program Change numbers that are not supported by Yamaha will be nored.

PROGRAM CHANGE STATUS 1100nnnn(CnH) PROGRAM NUMBER Oppppppp

#### HANNEL AFTER TOUCH

1101nnnn(DnH) 0vvvvvvv

ITCH BEND CHANGE

THEN DENU CHANGE STATUS Illi0nnn(EnH) n = 0 ~ 15 CHANNEL NUMBER LSB 0vvvvvvv PITCH BEND CHANGE LSB MSB 0vvvvvvv PITCH BEND CHANGE MSB Transmitted with a resolution of 7 bits.

#### ANNEL MODE MESSAGES

STATUS 1011nnnn(BnH) CONTROL NUMBER Occcccc

n = 0 ~ 15 CHANNEL NUMBER c = CONTROL NUMBER v = DATA VALUE CONTROL VALUE OVVVVVVV

#### LL SOUNDS OFF (CONTROL NUMBER = 78H DATA VALUE = 0)

LL SOUNDS OFF (CONTROL NUMBER = 701, DATA TROL = 5)
All the sounds currently played including the channel messages suchold-on in a certain channel are muted when receiving this message

#### 'ESET ALL CONTROLLERS (CONTROL NUMBER = 79H DATA VALUE = 0)

Resets the values set for PITCH BEND CHANGE

for the following co 0 (center) 0 (minimum) CHANNEL AFTER TOUCH MODULATION EXPRESSION BREATH CONTROLLER 0 (minimum) 127 (maximum) 127 (maximum) 127 (maximum) FOOT CONTROLLER RIBBON CONTROLLER 127 (maximum)
O (center)
O (center)
O (center)
O (off)
O (off)
Not assigned; No chang
Resets the source note KNOB 1 KNOB 2 SUSTAIN SWITCH SOSTENUTO SWITCH

PORTAMENT CONTROL

Doesn't reset the following data:

PROGRAM CHANCE, BANK SELECT MSS/LSB, VOLUME, PAN.

HARMONIC CONTENT, SUSTAIN LEVEL, RELEASE TIME, ATTACK TIME, DECAY TIME, BRIGHTNESS

EFFECT SEND LEVEL 1, EFFECT SEND LEVEL 3, PORTAMENTO SWITCH

PITCH BEND SENSITIVITY, FINE TUNING, COARSE TUNING ASSIGNABLE CONTROLLER

#### LL NOTES OFF (CONTROL NUMBER = 7BH , DATA VALUE = 0)

All the notes currently set to on in certain channel(s) are muted when receiving this message. However, if Sustain or Sostenuto is on, notes will continue sounding until these are turned off.

### OMNI MODE OFF (CONTROL NUMBER = 7CH , DATA VALUE = 0)

Performs the same function as when receiving ALL NOTES OFF Sets VOICE RECEIVE CHANNEL to "OMNI OFF," channel 1.

(CONTROL NUMBER = 7DH , DATA VALUE = 0)

Performs the same function as when receiving ALL NOTES OFF. Sets VOICE RECEIVE CHANNEL to \*OMNI ON.\*

MONO (CONTROL NUMBER = 7EH, DATA VALUE = 0.16)
Performs the same function as when receiving ALL SOUNDS OFF. If the 3rd byte (mono) is within 0 through 16, the channel will be Mode4(m = 1).
In VOICE MODE, the mode can be Mode2(m=1) according to VOICE RECEIVE CHANNEL.

OLY (CONTROL NUMBER = 7FH , DATA VALUE = 0)
Performs the same function as when receiving ALL SOUNDS OFF. The channel will be

Mode3.

In VOICE MODE, the mode can be Model according to VOICE RECEIVE CHANNEL.

#### SISTERED PARAMETER NUMBER

STATUS LSB RPN LSB MSB RPN MSB DATA ENTRY MSB Ogqqqqqq q = RPN MSB(Refer to the table as shown below)

DATA VALUE DATA ENTRY LSB DATA VALUE

First, designate the parameter using RPN MSB/LSB numbers. Then, set its value with data entry MSB/LSB.

RPN D.ENTRY
LSB MSB MSB LSB PARAMETER NAME DATA RANGE

I-REGISTERED PARAMETER NUMBER

There are no applicable parameters.

#### TEM REAL TIME MESSAGES

#### CTIVE SENSING

111111110(FEH)

Transmitted at every 200 msec.
Once this code is received, the instrument starts sensing. When no status nor data is received for over approximately 350 ms, MIDI receiving buffer will be cleared, and the sounds currently played and the sustain switch are forcibly turned off. In this case, each control data will be reset to a certain value.

#### TEM EXCLUSIVE MESSAGE

#### NIVERSAL NON REALTIME MESSAGE

#### -6-1-1)GENERAL MIDI MODE ON

FOH 7EH 7FH 09H 01H F7H

Received only when SYSTEM Receive GM/XG on is set to on in PERFORMANCE MODE. The Part values will be reset according to the SYSTEM Internal Part settings.

#### (3-6-1-2)IDENTITY REQUEST(Receive only)

FOH 7EH OnH O6H O1H F7H ("n" = Device No.However, this instrument receives under

#### (3-6-1-3)IDENTITY REPLY (Transmit only)

FOH 7EH 7FH 06H 02H 43H 00H 41H ddH ddH 00H 00H 00H 01H F7H

CS6x: 5C 03 CS6R: 5D 03

#### (3-6-2)UNIVERSAL REALTIME MESSAGE

#### (3-6-2-1) MIDI MASTER VOLUME

FOH 7FH 7FH 04H 01H 11H mmH F7H

Sets the MASTER VOLUME value. The value "mm" is used to set the master volume (the value "ll" should be ignored).

#### (3-6-3)PARAMETER CHANGE

#### (3-6-3-1) XG SYSTEM ON

| (3-0-3-1) AG 313 | LIVION |                  |
|------------------|--------|------------------|
| 11110000         | F0     | Exclusive status |
| 1000011          | 43     | YAMAHA ID        |
| 0001nnnn         | ln     | device Number    |
| 1001100          | 4C     | Model ID         |
| Oaaaaaaa         | 0      | Address High     |
| Oaaaaaaa         | 0      | Address Mid      |
| Oaaaaaaa         | 7E     | Address Low      |
| 0                | 0      | Data             |
| 11110111         | F7     | End of Exclusive |

Received only when SYSTEM Receive GM/XG on is set to on in PERFORMANCE MODE. The Part values will be reset according to the SYSTEM Internal Part settings. Be aware that executing this message takes ca. 170ms and that, therefore, a certain interval before executing the following message is needed.

| (3-6-3-2) NATIVE | PARAMETER CHA | INGE, REMOTE SWITCH |
|------------------|---------------|---------------------|
| 11110000         | F0            | Exclusive status    |
| 01000011         | 43            | YAMAHA ID           |
| 0001nnnn         | ln            | device Number       |
| 01100100         | 64            | Model ID            |
| Oaaaaaaa         | aaaaaaa       | Address High        |
| Oaaaaaaa         | aaaaaaa       | Address Mid         |
| Oaaaaaaa         | aaaaaaa       | Address Low         |
| 0ddddddd         | ddddddd       | Data                |
|                  |               |                     |
| 11110111         | F7            | End of Exclusive    |

For parameters with data size of 2 or more, the appropriate number of data bytes will be transmitted.

See the following MIDI Data Table for Address and Byte Count.

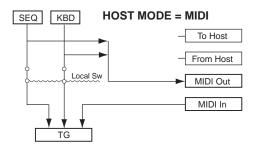
Always received no matter which device number is selected, in the case of REMOTE SWITCH.

#### (3-6-4)BULK DUMP

| DOLIN DOWN |         |                  |
|------------|---------|------------------|
| 11110000   | F0      | Exclusive status |
| 01000011   | 43      | YAMAHA ID        |
| 0000nnnn   | 0n      | device Number    |
| 01100100   | 64      | Model ID         |
| 0bbbbbbb   | bbbbbbb | Byte Count       |
| 0bbbbbbb   | bbbbbbb | Byte Count       |
| Oaaaaaaa   | aaaaaaa | Address High     |
| 0aaaaaaa   | aaaaaaa | Address Mid      |
| Oaaaaaaa   | aaaaaaa | Address Low      |
| 0          | 0       | Data             |
|            | 1       |                  |
| 0cccccc    | cccccc  | Check-sum        |
| 11110111   | F7      | End of Exclusive |

See the following MIDI Data Table for Address and Byte Count. The Check sum is the value that results in a value of 0 for the lower 7 bits when the Byte Count, Start Address, Data and Check sum itself are added.

#### (3-6-5) DUMP REQUEST


| 11110000 | F0      | Exclusive status |
|----------|---------|------------------|
| 01000011 | 43      | YAMAHA ID        |
| 0010nnnn | 2n      | device Number    |
| 01100100 | 64      | Model ID         |
| Oaaaaaaa | aaaaaaa | Address High     |
| Oaaaaaaa | aaaaaaa | Address Mid      |
| Oaaaaaaa | aaaaaaa | Address Low      |
| 11110111 | F7      | End of Exclusive |


See the following MIDI Data Table for Address and Byte Count.

# (3-6-6) PARAMETER REQUEST

| , | PARAIVIE I ER REQUE | 31      |                   |
|---|---------------------|---------|-------------------|
|   | 11110000            | F0      | Exclusive status  |
|   | 01000011            | 43      | YAMAHA ID         |
|   | 0011nnnn            | 3n      | device Number     |
|   | 01100100            | 64      | Model ID          |
|   | 0aaaaaaa            | aaaaaaa | Address Hig       |
|   | 0aaaaaaa            | aaaaaaa | Address Mid       |
|   | 0aaaaaaa            | aaaaaaa | Address Low       |
|   | 11110111            | F7      | End of Evaluative |

See the following MIDI Data Table for Address and Byte Count.





Although three types of note on/note off data, received via MIDI, played by the internal sequencer and played on the keyboard will be distinguished, the other controllers (channel messages) equally affect the entire notes.

ALL SOUNDS OFF clears all the sounds in the specific channel(s) played by both the keyboard and the data via MIDI. ALL NOTES OFF received via MIDI clears the sounds in the specific channel(s) played via MIDI.

YAMAHA [ Music Synthesizer --- synth. part ] Model S80 MIDI Implementation Chart

Function... Transmitted Recognized Remarks Basic Default 1 - 16 1 - 16 Memorised Channel Changed 1 - 16 1 - 16 Memorised Mode Default 3 1 Messages X 1 - 4 (m=1)\*2 Altered \*\*\*\*\* Χ 0 - 1270 - 127 Transpose Note 0 - 127 \*\*\*\*\* Number : True voice Velocity Note ON O 9nH, v=1-1270 v=1-127Note OFF  $\times$  9nH, v=0X Key's After X × Touch Ch's 0 0 \*1 Pitch Bend 0 0 \*1 \*1 Control 0,32 0 0 Bank Select Change 1,7,11 0 0 \*1 X 5,10 0 \*1 X 6,38 0 \*1 Data Entry 64 0 0 \*1 Sustain Sw 65 X 0 \*1 Portamento Sw 66 X 0 \*1 Sosutenuto 71-75 X 0 \*1 Sound Controller 91,93 X 0 \*1 Effect Depth 96-97 X 0 \*1 RPN Inc, Dec 100-101 X 0 \*1 RPN LSB, MSB Assignable Cntrl 1-95 0 0 \*1 O 0 - 127 \*1 O 0 - 127 Prog \*\*\*\*\* 0 - 127 Change : True # System Exclusive 0 0 Common : Song Pos. × X : Song Sel. X X X : Tune X 0 System : Clock X Real Time : Commands X X : All Sound Off O(120,126,127) (XXXO O (123-125) O (23-125) : Reset All Cntrls : Local ON/OFF Aux Mes-: All Notes OFF sages: Active Sense : Reset

Mode 1 : OMNI ON , POLY Mode 3 : OMNI OFF, POLY

Mode 2 : OMNI ON , MONO Mode 4 : OMNI OFF, MONO O : Yes X : No

Date :13-JUL-1999

Version: 1.0

Notes:

<sup>\*1</sup> receive if switch is on.

<sup>\*2</sup> m is always treated as "1" regardless of its value.

YAMAHA [ Music Synthesizer --- seq. part ]
Model S80 MIDI Implementation Chart

Date :13-JUL-1999 Version : 1.0

| Function                                                                                               | Transmitted                             | Recognized       | Remarks   |
|--------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------|-----------|
| Basic Default<br>Channel Changed                                                                       | 1 - 16<br>X                             | ×                | Memorised |
| Mode Default<br>Messages<br>Altered                                                                    | ×<br>×<br>*******                       | ×<br>×<br>×      |           |
| Note<br>Number : True voice                                                                            | 0 - 127                                 | ×                |           |
| Velocity Note ON<br>Note OFF                                                                           | O 9nH, v=1-127<br>X 9nH, v=0            | ×                |           |
| After Key's<br>Touch Ch's                                                                              | 0                                       | ×                |           |
| Pitch Bend                                                                                             | 0                                       | ×                |           |
| Control 0-121<br>Change                                                                                |                                         | ×                |           |
| Prog<br>Change : True #                                                                                | O 0 - 127<br>******                     | ×                |           |
| System Exclusive                                                                                       | 0                                       | ×                |           |
| Common : Song Pos. : Song Sel. : Tune                                                                  | ×<br>×<br>×                             | ×<br>×<br>×      |           |
| System : Clock<br>Real Time : Commands                                                                 | O *2<br>O *2                            | O *1 *2<br>O *2  |           |
| : All Sound Off Aux : Reset All Cntrls : Local ON/OFF Mes- : All Notes OFF sages: Active Sense : Reset | 0<br>0<br>0<br>0<br>0<br>X              | X<br>X<br>X<br>X |           |
| Notes: *1 if                                                                                           | MIDI sync is midi<br>MIDI control in is | on               |           |

Mode 1 : OMNI ON , POLY Mode 3 : OMNI OFF, POLY

Mode 2 : OMNI ON , MONO Mode 4 : OMNI OFF, MONO

O : Yes X : No